Fan Weiwei, Oh Tae Gyu, Wang Hui J, Crossley Lillian, He Mingxiao, Robbins Hunter, Koopari Chandra, Dai Yang, Truitt Morgan L, Liddle Christopher, Yu Ruth T, Atkins Annette R, Downes Michael, Evans Ronald M
Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.
Department of Oncology Science, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2426179122. doi: 10.1073/pnas.2426179122. Epub 2025 May 12.
Mitochondrial energy metabolism is vital for muscle function and is tightly controlled at the transcriptional level, both in the basal state and during adaptive muscle remodeling. The importance of the transcription factors estrogen-related receptors (ERRs) in controlling innate mitochondrial energetics has been recently demonstrated. However, whether different ERR isoforms display distinct functions in glycolytic versus oxidative myofibers is largely unknown. Moreover, their roles in regulating exercise-induced adaptive mitochondrial biogenesis remain unclear. Using muscle-specific single and combinatorial knockout mouse models, we have identified both cooperative and distinct roles of the ERR isoforms ERRα and ERRγ in regulating mitochondrial energy metabolism in different muscles. We demonstrate the essential roles of both these ERRs in mediating adaptive mitochondrial biogenesis in response to exercise training. We further show that PGC1α-induced mitochondrial biogenesis is completely abolished in primary myotubes with ERRα deletion but not ERRγ, highlighting distinct roles of these two isoforms in adaptive mitochondrial remodeling. Mechanistically, we find that both ERRs directly bind to the majority of mitochondrial energetic genes and control their expression, largely through collaborative binding to the same genomic loci. Collectively, our findings reveal critical and direct regulatory roles of ERRα and ERRγ in governing both innate and adaptive mitochondrial energetics in skeletal muscle.
线粒体能量代谢对肌肉功能至关重要,在基础状态和适应性肌肉重塑过程中,其在转录水平上都受到严格调控。转录因子雌激素相关受体(ERRs)在控制先天性线粒体能量学方面的重要性最近已得到证实。然而,不同的ERR亚型在糖酵解型与氧化型肌纤维中是否表现出不同的功能,目前尚不清楚。此外,它们在调节运动诱导的适应性线粒体生物发生中的作用仍不明确。利用肌肉特异性单基因和组合敲除小鼠模型,我们确定了ERR亚型ERRα和ERRγ在调节不同肌肉中线粒体能量代谢方面的协同作用和独特作用。我们证明了这两种ERR在介导运动训练引起的适应性线粒体生物发生中都起着至关重要的作用。我们进一步表明,在ERRα缺失的原代肌管中,PGC1α诱导的线粒体生物发生完全被消除,但ERRγ缺失的原代肌管中则没有,这突出了这两种亚型在适应性线粒体重塑中的不同作用。从机制上讲,我们发现这两种ERR都直接与大多数线粒体能量基因结合并控制其表达,主要是通过协同结合到相同的基因组位点。总的来说,我们的研究结果揭示了ERRα和ERRγ在控制骨骼肌先天性和适应性线粒体能量学方面的关键和直接调控作用。