Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX (W.X., H.L., A.W., L.Q., A.G., J.R.D.C.R., Y.Z., K.Y., M.L., E.N., A.M., L.Z.).
Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy, St Louis, MO (C.B., M.H., T.B.).
Circulation. 2024 Jan 16;149(3):227-250. doi: 10.1161/CIRCULATIONAHA.123.066542. Epub 2023 Nov 14.
Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available.
Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity.
Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes.
ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.
心脏代谢功能障碍是心力衰竭(HF)的标志。雌激素相关受体 ERRα 和 ERRγ 是心脏代谢的重要调节剂。因此,激活 ERR 可能是 HF 的一种潜在治疗干预措施。然而,缺乏体内研究证明 ERR 激动剂治疗 HF 的潜在用途,因为没有适合体内使用的具有适当药代动力学的化合物。
我们使用基于结构的设计方法设计并合成了 2 种结构不同的泛 ERR 激动剂 SLU-PP-332 和 SLU-PP-915。我们研究了 ERR 激动剂对体内压力超负荷诱导的 HF 模型中心功能的影响。我们进行了全面的功能、多组学(RNA 测序和代谢组学研究)和遗传依赖性研究,包括体内和体外研究,以剖析分子机制、ERR 同工型依赖性和靶标特异性。
SLU-PP-332 和 SLU-PP-915 均显著改善了射血分数,改善了纤维化,并增加了与压力超负荷诱导的 HF 相关的存活率,而不影响心脏肥大。ERR 激动剂广泛激活了代谢基因,特别是涉及脂肪酸代谢和线粒体功能的基因。代谢组学分析显示,在经过 6 周压力超负荷的小鼠心脏中,代谢谱在脂肪酸/脂质和三羧酸/氧化磷酸化代谢物方面得到了实质性的正常化。ERR 激动剂在体外和体内均增加了线粒体氧化能力和脂肪酸的利用。通过体外和体内遗传依赖性实验,我们表明 ERRγ 是 ERR 激动剂诱导的转录调节和心脏保护的主要介导者,并明确证明了靶标特异性。ERR 激动剂还导致细胞周期和发育途径的下调,这在心肌细胞中部分由 E2F1 介导。
ERR 激动剂维持氧化代谢,从而在体内保护心脏免受压力超负荷诱导的 HF。我们的结果提供了直接的药理证据,支持进一步开发 ERR 激动剂作为新型 HF 治疗药物。