Suppr超能文献

病理学中的基础模型:架起人工智能创新与临床实践的桥梁。

Foundation models in pathology: bridging AI innovation and clinical practice.

作者信息

Hacking Sean

机构信息

Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA

出版信息

J Clin Pathol. 2025 Jun 19;78(7):433-435. doi: 10.1136/jcp-2024-209910.

Abstract

Foundation models are revolutionising pathology by leveraging large-scale, pretrained artificial intelligence (AI) systems to enhance diagnostics, automate workflows and expand applications. These models address computational challenges in gigapixel whole-slide images with architectures like GigaPath, enabling state-of-the-art performance in cancer subtyping and biomarker identification by capturing cellular variations and microenvironmental changes. Visual-language models such as CONCH integrate histopathological images with biomedical text, facilitating text-to-image retrieval and classification with minimal fine-tuning, mirroring how pathologists synthesise multimodal information. Open-source foundation models will drive accessibility and innovation, allowing researchers to refine AI systems collaboratively while reducing dependency on proprietary solutions. Combined with decentralised learning approaches like federated and swarm learning, these models enable secure, large-scale training without centralised data sharing, preserving patient confidentiality while improving generalisability across populations. Despite these advancements, challenges remain in ensuring scalability, mitigating bias and aligning AI insights with clinical decision-making. Explainable AI techniques, such as saliency maps and feature attribution, are critical for fostering trust and interpretability. As multimodal integration-combining pathology, radiology and genomics-advances personalised medicine, foundation models stand as a transformative force in computational pathology, bridging the gap between AI innovation and real-world clinical implementation.

摘要

基础模型正在通过利用大规模预训练人工智能(AI)系统来革新病理学,以增强诊断、使工作流程自动化并扩展应用。这些模型通过GigaPath等架构应对千兆像素全切片图像中的计算挑战,通过捕捉细胞变异和微环境变化,在癌症亚型分类和生物标志物识别方面实现了先进的性能。诸如CONCH之类的视觉语言模型将组织病理学图像与生物医学文本整合在一起,只需进行最少的微调就能促进文本到图像的检索和分类,反映了病理学家合成多模态信息的方式。开源基础模型将推动可及性和创新,使研究人员能够协作改进AI系统,同时减少对专有解决方案的依赖。与联邦学习和群体学习等分散式学习方法相结合,这些模型能够在不进行集中式数据共享的情况下进行安全的大规模训练,在保护患者隐私的同时提高跨人群的通用性。尽管取得了这些进展,但在确保可扩展性、减轻偏差以及使AI见解与临床决策保持一致方面仍存在挑战。可解释AI技术,如显著性图和特征归因,对于建立信任和可解释性至关重要。随着多模态整合(将病理学、放射学和基因组学相结合)推动个性化医疗的发展,基础模型成为计算病理学中的变革力量,弥合了AI创新与现实世界临床应用之间的差距。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验