Suppr超能文献

利用真实世界数据和机器学习识别临床结局的预测性子表型。

Identification of predictive subphenotypes for clinical outcomes using real world data and machine learning.

作者信息

Pan Weishen, Hathi Deep, Xu Zhenxing, Zhang Qiannan, Li Ying, Wang Fei

机构信息

Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.

出版信息

Nat Commun. 2025 May 12;16(1):3797. doi: 10.1038/s41467-025-59092-8.

Abstract

Predicting treatment response is an important problem in real-world applications, where the heterogeneity of the treatment response remains a significant challenge in practice. Unsupervised machine learning methods have been proposed to address this challenge by clustering patients with similar electronic health record (EHR) data. However, they cannot guarantee coherent outcomes within the groups. Here, we propose Graph-Encoded Mixture Survival (GEMS) as a general machine learning framework to identify distinct predictive subphenotypes that guarantee coherent survival and baseline characteristics within each subphenotype. We apply our method to a real-world dataset of advanced non-small cell lung cancer (aNSCLC) patients receiving first-line immune checkpoint inhibitor (ICI) therapy to predict overall survival (OS). Our method outperforms baseline methods for predicting OS and identifies three reproducible subphenotypes associated with distinct baseline clinical characteristics and OS. Our results demonstrate that our method can provide insights in the heterogeneity of treatment response and potentially influence treatment selection.

摘要

预测治疗反应是实际应用中的一个重要问题,在实际中,治疗反应的异质性仍然是一个重大挑战。无监督机器学习方法已被提出,通过对具有相似电子健康记录(EHR)数据的患者进行聚类来应对这一挑战。然而,它们不能保证组内结果的一致性。在此,我们提出图编码混合生存(GEMS)作为一个通用的机器学习框架,以识别不同的预测亚表型,这些亚表型可保证每个亚表型内生存和基线特征的一致性。我们将我们的方法应用于接受一线免疫检查点抑制剂(ICI)治疗的晚期非小细胞肺癌(aNSCLC)患者的真实世界数据集,以预测总生存期(OS)。我们的方法在预测OS方面优于基线方法,并识别出与不同基线临床特征和OS相关的三种可重复的亚表型。我们的结果表明,我们的方法可以为治疗反应的异质性提供见解,并可能影响治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验