Suppr超能文献

一种新型基于 MRI 的深度学习网络结合注意力机制,用于预测 IDH 突变型星形细胞瘤中 CDKN2A/B 纯合缺失状态。

A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma.

机构信息

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

School of Computer Science and Engineering, Chongqing Normal University, Chongqing, 401331, China.

出版信息

Eur Radiol. 2024 Jan;34(1):391-399. doi: 10.1007/s00330-023-09944-y. Epub 2023 Aug 8.

Abstract

OBJECTIVES

To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.

METHODS

Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.

RESULTS

The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.

CONCLUSIONS

The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.

CLINICAL RELEVANCE STATEMENT

A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.

KEY POINTS

• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.

摘要

目的

开发一种基于磁共振成像(MRI)的深度学习方法,用于预测异柠檬酸脱氢酶(IDH)突变型星形细胞瘤中环细胞周期蛋白依赖性激酶抑制剂 2A/B(CDKN2A/B)纯合缺失状态。

方法

从癌症影像档案(TCIA)和癌症基因组图谱(TCGA)中分别获得 234 名患者的多参数脑 MRI 数据和相应的基因组信息(111 名 CDKN2A/B 纯合缺失阳性,123 名 CDKN2A/B 纯合缺失阴性)。在 ResNet 和 ConvNeXt 网络的基础上分别构建两个独立的多序列网络(ResFN-Net 和 FN-Net),并结合注意力机制,利用包括增强对比 T1 加权成像(CE-T1WI)和 T2 加权成像(T2WI)在内的 MRI 图像对 CDKN2A/B 纯合缺失状态进行分类。通过三向交叉验证总结网络性能;同时进行 ROC 分析。

结果

ResFN-Net 的平均交叉验证准确率(ACC)为 0.813。ResFN-Net 的平均交叉验证曲线下面积(AUC)为 0.8804。FN-Net 的平均交叉验证 ACC 和 AUC 分别为 0.9236 和 0.9704。比较两个网络(ResFN-Net 和 FN-Net)的所有序列组合,CE-T1WI 和 T2WI 的序列组合表现最佳,ACC 和 AUC 分别为 0.8244、0.8975 和 0.8971、0.9574。

结论

基于 ConvNeXt 网络的 FN-Net 深度学习网络在预测 IDH 突变型星形细胞瘤 CDKN2A/B 纯合缺失状态方面取得了有前景的性能。

临床意义

开发了一种基于术前 MRI 的新的深度学习网络(FN-Net),用于预测 CDKN2A/B 纯合缺失状态。该网络有可能成为胶质瘤中 CDKN2A/B 无创特征的实用工具,以支持个性化分类和治疗计划。

重点

• CDKN2A/B 纯合缺失状态是胶质瘤分级和预后的重要标志物。• 开发了一种基于磁共振成像的深度学习方法来预测 CDKN2A/B 纯合缺失状态。• 基于 ConvNeXt 网络的预测性能优于 ResNet 网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验