Suppr超能文献

利用基于SUCMO算法训练的门控循环单元-卷积神经网络(GRU-CNN)深度学习模型提升物联网安全性。

Advances to IoT security using a GRU-CNN deep learning model trained on SUCMO algorithm.

作者信息

Sagu Amit, Gill Nasib Singh, Gulia Preeti, Alduaiji Noha, Shukla Piyush Kumar, Shah Mohd Asif

机构信息

Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.

Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.

出版信息

Sci Rep. 2025 May 12;15(1):16485. doi: 10.1038/s41598-025-99574-9.

Abstract

The rapid expansion of the Internet of Things (IoT) has significantly improved the various aspects of our daily life. However, along with its benefits, new security threats such as Denial of Service (DoS) attacks and Botnets have emerged. To adopt this technology and integrity of IoT environment, detection of such attacks become crucial. This paper proposes a hybrid deep learning model that combines Convolutional Neural Network (CNN) and Gated Recurrent Units (GRUs) to classify the IoT security threats. The CNN is used to extract the spatial features from the network data, where on the other hand GRUs used for capturing the temporal dependencies. This combination makes the model effective at analysing both static and dynamic aspects of network data. Further, to optimize the performance of the proposed hybrid model, self-upgraded Cat and Mouse Optimization (SUCMO) algorithm is employed, a state of art optimization technique. The SUCMO algorithm fine-tunes the deep learning model's hyperparameters to improve classification accuracy. The proposed model is evaluated through experiments on two different datasets i.e., UNSW-NB15 and BoT-IoT, and results demonstrates that proposed work outperforms the traditional work as well as state of the art works.

摘要

物联网(IoT)的迅速扩张显著改善了我们日常生活的各个方面。然而,伴随着其带来的好处,诸如拒绝服务(DoS)攻击和僵尸网络等新的安全威胁也出现了。为了采用这项技术并确保物联网环境的完整性,检测此类攻击变得至关重要。本文提出了一种混合深度学习模型,该模型结合了卷积神经网络(CNN)和门控循环单元(GRU)来对物联网安全威胁进行分类。CNN用于从网络数据中提取空间特征,而GRU则用于捕捉时间依赖性。这种结合使得该模型在分析网络数据的静态和动态方面都很有效。此外,为了优化所提出的混合模型的性能,采用了自我升级的猫鼠优化(SUCMO)算法,这是一种先进的优化技术。SUCMO算法对深度学习模型的超参数进行微调,以提高分类准确率。通过在两个不同的数据集即UNSW-NB15和BoT-IoT上进行实验,对所提出的模型进行了评估,结果表明所提出的工作优于传统工作以及现有技术工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b85/12069528/9aabac678da3/41598_2025_99574_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验