文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fully volumetric body composition analysis for prognostic overall survival stratification in melanoma patients.

作者信息

Borys Katarzyna, Lodde Georg, Livingstone Elisabeth, Weishaupt Carsten, Römer Christian, Künnemann Marc-David, Helfen Anne, Zimmer Lisa, Galetzka Wolfgang, Haubold Johannes, Friedrich Christoph M, Umutlu Lale, Heindel Walter, Schadendorf Dirk, Hosch René, Nensa Felix

机构信息

Institute for Artificial Intelligence in Medicine, University Hospital Essen, Girardetstraße 2, 245131, Essen, Germany.

Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.

出版信息

J Transl Med. 2025 May 12;23(1):532. doi: 10.1186/s12967-025-06507-1.


DOI:10.1186/s12967-025-06507-1
PMID:40355935
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12067685/
Abstract

BACKGROUND: Accurate assessment of expected survival in melanoma patients is crucial for treatment decisions. This study explores deep learning-based body composition analysis to predict overall survival (OS) using baseline Computed Tomography (CT) scans and identify fully volumetric, prognostic body composition features. METHODS: A deep learning network segmented baseline abdomen and thorax CTs from a cohort of 495 patients. The Sarcopenia Index (SI), Myosteatosis Fat Index (MFI), and Visceral Fat Index (VFI) were derived and statistically assessed for prognosticating OS. External validation was performed with 428 patients. RESULTS: SI was significantly associated with OS on both CT regions: abdomen (P ≤ 0.0001, HR: 0.36) and thorax (P ≤ 0.0001, HR: 0.27), with lower SI associated with prolonged survival. MFI was also associated with OS on abdomen (P ≤ 0.0001, HR: 1.16) and thorax CTs (P ≤ 0.0001, HR: 1.08), where higher MFI was linked to worse outcomes. Lastly, VFI was associated with OS on abdomen CTs (P ≤ 0.001, HR: 1.90), with higher VFI linked to poor outcomes. External validation replicated these results. CONCLUSIONS: SI, MFI, and VFI showed substantial potential as prognostic factors for OS in malignant melanoma patients. This approach leveraged existing CT scans without additional procedural or financial burdens, highlighting the seamless integration of DL-based body composition analysis into standard oncologic staging routines.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/d2697d7fe4e8/12967_2025_6507_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/d7e5839c05d5/12967_2025_6507_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/ef6e5b1d8701/12967_2025_6507_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/f46564c148a0/12967_2025_6507_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/ef200cef2671/12967_2025_6507_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/d2697d7fe4e8/12967_2025_6507_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/d7e5839c05d5/12967_2025_6507_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/ef6e5b1d8701/12967_2025_6507_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/f46564c148a0/12967_2025_6507_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/ef200cef2671/12967_2025_6507_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c7/12067685/d2697d7fe4e8/12967_2025_6507_Fig5_HTML.jpg

相似文献

[1]
Fully volumetric body composition analysis for prognostic overall survival stratification in melanoma patients.

J Transl Med. 2025-5-12

[2]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[3]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[4]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[5]
Integrating Body Composition and Nutritional Indices: A Novel Prognostic Tool for Survival in Pancreatic Cancer.

J Cachexia Sarcopenia Muscle. 2025-8

[6]
Automated three-dimensional body composition analysis identifies visceral adipose tissue radiodensity as a predictor of mortality and recurrence in colorectal cancer.

Clin Nutr. 2025-8

[7]
Deep Learning-Based Body Composition Analysis for Outcome Prediction in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Insights From the LOTIS-2 Trial.

JCO Clin Cancer Inform. 2025-7

[8]
Risk score stratification of cutaneous melanoma patients based on whole slide images analysis by deep learning.

J Eur Acad Dermatol Venereol. 2025-8

[9]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[10]
Neoadjuvant treatment for stage III and IV cutaneous melanoma.

Cochrane Database Syst Rev. 2023-1-17

引用本文的文献

[1]
Correction: Fully volumetric body composition analysis for prognostic overall survival stratification in melanoma patients.

J Transl Med. 2025-5-28

本文引用的文献

[1]
Comprehensive analysis of body composition features in melanoma patients treated with tyrosine kinase inhibitors.

J Dtsch Dermatol Ges. 2024-6

[2]
BOA: A CT-Based Body and Organ Analysis for Radiologists at the Point of Care.

Invest Radiol. 2024-6-1

[3]
High intramuscular adipose tissue content associated with prognosis and postoperative complications of cancers.

J Cachexia Sarcopenia Muscle. 2023-12

[4]
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.

Radiol Artif Intell. 2023-7-5

[5]
Automatic segmentation of large-scale CT image datasets for detailed body composition analysis.

BMC Bioinformatics. 2023-9-18

[6]
Visceral fat percentage for prediction of outcome in uterine cervical cancer.

Gynecol Oncol. 2023-9

[7]
FHIR-PYrate: a data science friendly Python package to query FHIR servers.

BMC Health Serv Res. 2023-7-6

[8]
Association of myosteatosis with treatment response and survival in patients with hepatocellular carcinoma undergoing chemoembolization: a retrospective cohort study.

Sci Rep. 2023-3-9

[9]
Associations of Total Body Fat Mass and Skeletal Muscle Index with All-Cause and Cancer-Specific Mortality in Cancer Survivors.

Cancers (Basel). 2023-2-8

[10]
Postdiagnosis body fatness, weight change and breast cancer prognosis: Global Cancer Update Program (CUP global) systematic literature review and meta-analysis.

Int J Cancer. 2023-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索