文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

墨西哥人群中2型糖尿病分类的性别特异性集成模型

Sex-Specific Ensemble Models for Type 2 Diabetes Classification in the Mexican Population.

作者信息

Mendoza-Mendoza Miguel M, Acosta-Jiménez Samara, Galván-Tejada Carlos E, Maeda-Gutiérrez Valeria, Celaya-Padilla José M, Galván-Tejada Jorge I, Cruz Miguel

机构信息

Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.

Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Instituto Mexicano del Seguro Social, Ciudad de México, 06720, México.

出版信息

Diabetes Metab Syndr Obes. 2025 May 8;18:1501-1525. doi: 10.2147/DMSO.S517905. eCollection 2025.


DOI:10.2147/DMSO.S517905
PMID:40356710
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12068399/
Abstract

BACKGROUND: Type 2 diabetes (T2D) is considered a global pandemic by the World Health Organization (WHO), with a growing prevalence, particularly in Mexico. Accurate early diagnosis remains a challenge, especially when accounting for biological sex-based differences. PURPOSE: This study aims to enhance the classification of T2D in the Mexican population by applying sex-specific ensemble models combined with genetic algorithm-based feature selection. MATERIALS AND METHODS: A dataset of 1787 Mexican patients (895 females, 892 males) is analyzed. Data are split by sex, and feature selection is performed using GALGO, a genetic algorithm-based tool. Classification models including Random Forest, K-Nearest Neighbor, Support Vector Machine, and Logistic Regression are trained and evaluated. Ensemble stacking models are constructed separately for each sex to improve classification performance. RESULTS: The male-specific ensemble model achieved 94% specificity and 96% sensitivity, while the female-specific model reached 96% specificity and 90% sensitivity. Both models demonstrated strong overall performance. CONCLUSION: The proposed sex-specific ensemble models represent a clinically valuable approach to personalized T2D diagnosis. By identifying sex-specific predictive features, this work supports the development of precision medicine tools tailored to the Mexican population. This contributes to improving diagnostic precision and supporting more equitable and personalized approaches in clinical settings.

摘要

背景:世界卫生组织(WHO)认为2型糖尿病(T2D)是一种全球流行病,其患病率不断上升,在墨西哥尤为明显。准确的早期诊断仍然是一项挑战,尤其是考虑到基于生物性别的差异时。 目的:本研究旨在通过应用性别特异性集成模型并结合基于遗传算法的特征选择,提高墨西哥人群中T2D的分类准确率。 材料与方法:分析了1787名墨西哥患者(895名女性,892名男性)的数据集。数据按性别进行划分,并使用基于遗传算法的工具GALGO进行特征选择。对包括随机森林、K近邻、支持向量机和逻辑回归在内的分类模型进行训练和评估。为每个性别分别构建集成堆叠模型以提高分类性能。 结果:男性特异性集成模型的特异性达到94%,敏感性达到96%,而女性特异性模型的特异性达到96%,敏感性达到90%。两个模型均表现出强大的整体性能。 结论:所提出的性别特异性集成模型是一种具有临床价值的个性化T2D诊断方法。通过识别性别特异性预测特征,本研究支持了针对墨西哥人群量身定制的精准医学工具的开发。这有助于提高诊断精度,并在临床环境中支持更公平和个性化的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/8162c71f2809/DMSO-18-1501-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/02b037a78f6d/DMSO-18-1501-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/04afbfe48626/DMSO-18-1501-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/d7db2e404286/DMSO-18-1501-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/2a0116b74530/DMSO-18-1501-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/d12265e8e074/DMSO-18-1501-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/3ef0744a56f5/DMSO-18-1501-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/6ffc76bcdbd6/DMSO-18-1501-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/43cc9b64a14c/DMSO-18-1501-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/4fa2c58f33f0/DMSO-18-1501-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/63a2c3e7e1be/DMSO-18-1501-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/f293d4ba79f1/DMSO-18-1501-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/63247ec5e02c/DMSO-18-1501-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/e0e0e6249d9f/DMSO-18-1501-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/046361bd738f/DMSO-18-1501-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/0722f552d8c4/DMSO-18-1501-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/46a4a493ecd7/DMSO-18-1501-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/8162c71f2809/DMSO-18-1501-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/02b037a78f6d/DMSO-18-1501-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/04afbfe48626/DMSO-18-1501-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/d7db2e404286/DMSO-18-1501-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/2a0116b74530/DMSO-18-1501-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/d12265e8e074/DMSO-18-1501-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/3ef0744a56f5/DMSO-18-1501-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/6ffc76bcdbd6/DMSO-18-1501-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/43cc9b64a14c/DMSO-18-1501-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/4fa2c58f33f0/DMSO-18-1501-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/63a2c3e7e1be/DMSO-18-1501-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/f293d4ba79f1/DMSO-18-1501-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/63247ec5e02c/DMSO-18-1501-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/e0e0e6249d9f/DMSO-18-1501-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/046361bd738f/DMSO-18-1501-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/0722f552d8c4/DMSO-18-1501-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/46a4a493ecd7/DMSO-18-1501-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39b4/12068399/8162c71f2809/DMSO-18-1501-g0017.jpg

相似文献

[1]
Sex-Specific Ensemble Models for Type 2 Diabetes Classification in the Mexican Population.

Diabetes Metab Syndr Obes. 2025-5-8

[2]
Setting Ranges in Potential Biomarkers for Type 2 Diabetes Mellitus Patients Early Detection By Sex-An Approach with Machine Learning Algorithms.

Diagnostics (Basel). 2024-7-27

[3]
From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas.

Neurosurg Rev. 2025-4-29

[4]
A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.

Math Biosci Eng. 2022-4-13

[5]
Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.

Comput Methods Programs Biomed. 2021-1

[6]
Comparison of an Ensemble of Machine Learning Models and the BERT Language Model for Analysis of Text Descriptions of Brain CT Reports to Determine the Presence of Intracranial Hemorrhage.

Sovrem Tekhnologii Med. 2024

[7]
Learning from the machine: is diabetes in adults predicted by lifestyle variables? A retrospective predictive modelling study of NHANES 2007-2018.

BMJ Open. 2025-3-22

[8]
A Machine Learning Model for Predicting Breast Cancer Recurrence and Supporting Personalized Treatment Decisions Through Comprehensive Feature Selection and Explainable Ensemble Learning.

Cancer Manag Res. 2025-5-8

[9]
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.

BMC Bioinformatics. 2023-9-12

[10]
Hard Voting Ensemble Approach for the Detection of Type 2 Diabetes in Mexican Population with Non-Glucose Related Features.

Healthcare (Basel). 2022-7-22

本文引用的文献

[1]
Biomedical relation extraction method based on ensemble learning and attention mechanism.

BMC Bioinformatics. 2024-10-18

[2]
Identifying top ten predictors of type 2 diabetes through machine learning analysis of UK Biobank data.

Sci Rep. 2024-1-24

[3]
[Not Available].

Salud Publica Mex. 2023-6-13

[4]
Relationship Between Body Mass Index and Body Fat Percentage in a Group of Indian Participants: A Cross-Sectional Study From a Tertiary Care Hospital.

Cureus. 2023-10-27

[5]
Diabetes Detection Models in Mexican Patients by Combining Machine Learning Algorithms and Feature Selection Techniques for Clinical and Paraclinical Attributes: A Comparative Evaluation.

J Diabetes Res. 2023

[6]
A diabetes prediction model based on Boruta feature selection and ensemble learning.

BMC Bioinformatics. 2023-6-1

[7]
Predicting the Onset of Diabetes with Machine Learning Methods.

J Pers Med. 2023-2-24

[8]
Breast Cancer Detection Using Automated Segmentation and Genetic Algorithms.

Diagnostics (Basel). 2022-12-8

[9]
Metabolomic Selection in the Progression of Type 2 Diabetes Mellitus: A Genetic Algorithm Approach.

Diagnostics (Basel). 2022-11-15

[10]
Sex differences matter: Males and females are equal but not the same.

Physiol Behav. 2023-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索