Mendoza-Mendoza Miguel M, Acosta-Jiménez Samara, Galván-Tejada Carlos E, Maeda-Gutiérrez Valeria, Celaya-Padilla José M, Galván-Tejada Jorge I, Cruz Miguel
Unidad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México.
Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Instituto Mexicano del Seguro Social, Ciudad de México, 06720, México.
Diabetes Metab Syndr Obes. 2025 May 8;18:1501-1525. doi: 10.2147/DMSO.S517905. eCollection 2025.
BACKGROUND: Type 2 diabetes (T2D) is considered a global pandemic by the World Health Organization (WHO), with a growing prevalence, particularly in Mexico. Accurate early diagnosis remains a challenge, especially when accounting for biological sex-based differences. PURPOSE: This study aims to enhance the classification of T2D in the Mexican population by applying sex-specific ensemble models combined with genetic algorithm-based feature selection. MATERIALS AND METHODS: A dataset of 1787 Mexican patients (895 females, 892 males) is analyzed. Data are split by sex, and feature selection is performed using GALGO, a genetic algorithm-based tool. Classification models including Random Forest, K-Nearest Neighbor, Support Vector Machine, and Logistic Regression are trained and evaluated. Ensemble stacking models are constructed separately for each sex to improve classification performance. RESULTS: The male-specific ensemble model achieved 94% specificity and 96% sensitivity, while the female-specific model reached 96% specificity and 90% sensitivity. Both models demonstrated strong overall performance. CONCLUSION: The proposed sex-specific ensemble models represent a clinically valuable approach to personalized T2D diagnosis. By identifying sex-specific predictive features, this work supports the development of precision medicine tools tailored to the Mexican population. This contributes to improving diagnostic precision and supporting more equitable and personalized approaches in clinical settings.
背景:世界卫生组织(WHO)认为2型糖尿病(T2D)是一种全球流行病,其患病率不断上升,在墨西哥尤为明显。准确的早期诊断仍然是一项挑战,尤其是考虑到基于生物性别的差异时。 目的:本研究旨在通过应用性别特异性集成模型并结合基于遗传算法的特征选择,提高墨西哥人群中T2D的分类准确率。 材料与方法:分析了1787名墨西哥患者(895名女性,892名男性)的数据集。数据按性别进行划分,并使用基于遗传算法的工具GALGO进行特征选择。对包括随机森林、K近邻、支持向量机和逻辑回归在内的分类模型进行训练和评估。为每个性别分别构建集成堆叠模型以提高分类性能。 结果:男性特异性集成模型的特异性达到94%,敏感性达到96%,而女性特异性模型的特异性达到96%,敏感性达到90%。两个模型均表现出强大的整体性能。 结论:所提出的性别特异性集成模型是一种具有临床价值的个性化T2D诊断方法。通过识别性别特异性预测特征,本研究支持了针对墨西哥人群量身定制的精准医学工具的开发。这有助于提高诊断精度,并在临床环境中支持更公平和个性化的方法。
Diabetes Metab Syndr Obes. 2025-5-8
Comput Methods Programs Biomed. 2021-1
BMC Bioinformatics. 2023-9-12
BMC Bioinformatics. 2024-10-18
Salud Publica Mex. 2023-6-13
BMC Bioinformatics. 2023-6-1
J Pers Med. 2023-2-24
Diagnostics (Basel). 2022-12-8
Diagnostics (Basel). 2022-11-15
Physiol Behav. 2023-2-1