Suppr超能文献

基于非血糖相关特征的墨西哥人群2型糖尿病检测的硬投票集成方法

Hard Voting Ensemble Approach for the Detection of Type 2 Diabetes in Mexican Population with Non-Glucose Related Features.

作者信息

Morgan-Benita Jorge A, Galván-Tejada Carlos E, Cruz Miguel, Galván-Tejada Jorge I, Gamboa-Rosales Hamurabi, Arceo-Olague Jose G, Luna-García Huizilopoztli, Celaya-Padilla José M

机构信息

Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico.

Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, Mexico City 06720, Mexico.

出版信息

Healthcare (Basel). 2022 Jul 22;10(8):1362. doi: 10.3390/healthcare10081362.

Abstract

Type 2 diabetes mellitus (T2DM) represents one of the biggest health problems in Mexico, and it is extremely important to early detect this disease and its complications. For a noninvasive detection of T2DM, a machine learning (ML) approach that uses ensemble classification models with dichotomous output that is also fast and effective for early detection and prediction of T2D can be used. In this article, an ensemble technique by hard voting is designed and implemented using generalized linear regression (GLM), support vector machines (SVM) and artificial neural networks (ANN) for the classification of T2DM patients. In the materials and methods as a first step, the data is balanced, standardized, imputed and integrated into the three models to classify the patients in a dichotomous result. For the selection of features, an implementation of LASSO is developed, with a 10-fold cross-validation and for the final validation, the Area Under the Curve (AUC) is used. The results in LASSO showed 12 features, which are used in the implemented models to obtain the best possible scenario in the developed ensemble model. The algorithm with the best performance of the three is SVM, this model obtained an AUC of 92% ± 3%. The ensemble model built with GLM, SVM and ANN obtained an AUC of 90% ± 3%.

摘要

2型糖尿病(T2DM)是墨西哥最大的健康问题之一,早期发现这种疾病及其并发症极为重要。对于T2DM的无创检测,可以使用一种机器学习(ML)方法,该方法使用具有二分输出的集成分类模型,这种模型对于T2D的早期检测和预测也快速有效。在本文中,设计并实现了一种通过硬投票的集成技术,使用广义线性回归(GLM)、支持向量机(SVM)和人工神经网络(ANN)对T2DM患者进行分类。在材料与方法中,第一步是对数据进行平衡、标准化、插补并整合到三个模型中,以将患者分类为二分结果。对于特征选择,开发了一种LASSO实现,采用10折交叉验证,最终验证使用曲线下面积(AUC)。LASSO的结果显示有12个特征,这些特征用于所实现的模型中,以在开发的集成模型中获得最佳可能情况。三者中性能最佳的算法是SVM,该模型的AUC为92%±3%。由GLM、SVM和ANN构建的集成模型的AUC为90%±3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b55c/9331873/b68d5384dd0b/healthcare-10-01362-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验