Suppr超能文献

创建结合机器学习的化学发光特征阵列用于阿尔茨海默病血清诊断。

Creating Chemiluminescence Signature Arrays Coupled with Machine Learning for Alzheimer's Disease Serum Diagnosis.

作者信息

Zhu Biyue, Li Yanbo, Kuang Shi, Wang Huizhe, Yu Astra, Zhang Jing, Yang Jun, Wang Johnson, Shen Shiqian, Zhai Xuan, Xie Jiajun, Ran Chongzhao

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.

Department of Pharmacy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.

出版信息

Research (Wash D C). 2025 May 12;8:0653. doi: 10.34133/research.0653. eCollection 2025.

Abstract

Although omics and multi-omics approaches are the most used methods to create signature arrays for liquid biopsy, the high cost of omics technologies still largely limits their wide applications for point-of-care. Inspired by the bat echolocation mechanism, we propose an "echoes" approach for creating chemiluminescence signatures via screening of a compound library, and serum samples of Alzheimer's disease (AD) were used for our proof-of-concept study. We first demonstrated the discrepancy in physicochemical properties between AD and healthy control serums. On this basis, we developed a simple, cost-effective, and versatile platform termed UNICODE (UNiversal Interaction of Chemiluminescence echOes for Disease Evaluation). The UNICODE platform consists of a "bat" probe, which generates different chemiluminescence intensities upon interacting with various substrates, and a panel/array of "flag" molecules that are selected from library screening. The UNICODE array could enable the reflecting/"echoing" of the signatures of various serum components and intact physicochemical interactions between serum substrates. In this study, we screened a library of over 1,000 small molecules and identified 12 "flag" molecules (top 12) that optimally depict the differences between AD and healthy control serums. Finally, we employed the top 12 array to conduct tests on serum samples and utilized machine learning methods to optimize detection performance. We successfully distinguished AD serums, achieving the highest area under the curve of 90.24% with the random forest method. Our strategy could provide new insights into biofluid abnormality and prototype tools for developing liquid biopsy diagnoses for AD and other diseases.

摘要

尽管组学和多组学方法是用于创建液体活检特征阵列的最常用方法,但组学技术的高成本在很大程度上仍然限制了它们在即时医疗中的广泛应用。受蝙蝠回声定位机制的启发,我们提出了一种“回声”方法,通过筛选化合物库来创建化学发光特征,并将阿尔茨海默病(AD)的血清样本用于我们的概念验证研究。我们首先证明了AD血清与健康对照血清在物理化学性质上的差异。在此基础上,我们开发了一个简单、经济高效且通用的平台,称为UNICODE(用于疾病评估的化学发光回声通用相互作用)。UNICODE平台由一个“蝙蝠”探针组成,该探针在与各种底物相互作用时会产生不同的化学发光强度,以及一组从文库筛选中选出的“标记”分子组成的面板/阵列。UNICODE阵列能够反映/“回声”各种血清成分的特征以及血清底物之间完整的物理化学相互作用。在这项研究中,我们筛选了一个包含1000多种小分子的文库,并确定了12种“标记”分子(前12名),它们能够最佳地描绘AD血清与健康对照血清之间的差异。最后,我们使用前12名的阵列对血清样本进行测试,并利用机器学习方法优化检测性能。我们成功地区分了AD血清,随机森林方法的曲线下面积最高达到90.24%。我们的策略可以为生物流体异常提供新的见解,并为开发AD和其他疾病的液体活检诊断提供原型工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fe2/12067928/330bc39427bd/research.0653.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验