Suppr超能文献

揭示PRRT1在阿尔茨海默病中的表观遗传调控线索:一种将多组学分析与可解释机器学习相结合的策略

Uncovering the epigenetic regulatory clues of PRRT1 in Alzheimer's disease: a strategy integrating multi-omics analysis with explainable machine learning.

作者信息

Wang Fang, Liang Ying, Wang Qin-Wen

机构信息

Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China.

Ningbo Maritime Silk Road Institute, No.8, South Qianhu Road, Ningbo, China.

出版信息

Alzheimers Res Ther. 2025 Jan 7;17(1):12. doi: 10.1186/s13195-024-01646-x.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a complex neurodegenerative disorder with a largely unexplored epigenetic landscape.

OBJECTIVE

This study employs an innovative approach that integrates multi-omics analysis and explainable machine learning to explore the epigenetic regulatory mechanisms underlying the epigenetic signature of PRRT1 implicated in AD.

METHODS

Through comprehensive DNA methylation and transcriptomic profiling, we identified distinct epigenetic signatures associated with gene PRRT1 expression in AD patient samples compared to healthy controls. Utilizing interpretable machine learning models and ELMAR analysis, we dissected the complex relationships between these epigenetic signatures and gene expression patterns, revealing novel regulatory elements and pathways. Finally, the epigenetic mechanisms of these genes were investigated experimentally.

RESULTS

This study identified ten epigenetic signatures, constructed an interpretable AD diagnostic model, and utilized various bioinformatics methods to create an epigenomic map. Subsequently, the ELMAR R package was used to integrate multi-omics data and identify the upstream transcription factor MAZ for PRRT1. Finally, experiments confirmed the interaction between MAZ and PRRT1, which mediated apoptosis and autophagy in AD.

CONCLUSION

This study adopts a strategy that integrates bioinformatics analysis with molecular experiments, providing new insights into the epigenetic regulatory mechanisms of PRRT1 in AD and demonstrating the importance of explainable machine learning in elucidating complex disease mechanisms.

摘要

背景

阿尔茨海默病(AD)是一种复杂的神经退行性疾病,其表观遗传景观在很大程度上尚未得到探索。

目的

本研究采用一种创新方法,将多组学分析与可解释的机器学习相结合,以探索与AD相关的PRRT1表观遗传特征背后的表观遗传调控机制。

方法

通过全面的DNA甲基化和转录组分析,我们在AD患者样本中与健康对照相比,确定了与PRRT1基因表达相关的不同表观遗传特征。利用可解释的机器学习模型和ELMAR分析,我们剖析了这些表观遗传特征与基因表达模式之间的复杂关系,揭示了新的调控元件和途径。最后,通过实验研究了这些基因的表观遗传机制。

结果

本研究确定了十个表观遗传特征,构建了一个可解释的AD诊断模型,并利用各种生物信息学方法创建了一个表观基因组图谱。随后,使用ELMAR R包整合多组学数据,并确定PRRT1的上游转录因子MAZ。最后,实验证实了MAZ与PRRT1之间的相互作用,其介导了AD中的细胞凋亡和自噬。

结论

本研究采用了一种将生物信息学分析与分子实验相结合的策略,为PRRT1在AD中的表观遗传调控机制提供了新的见解,并证明了可解释的机器学习在阐明复杂疾病机制中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a67/11706112/65a72d366c7b/13195_2024_1646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验