Ks Syamjith, Rout Shubhasmita, Jacob Alan R
Soft Matter Group, Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India.
J Chem Phys. 2025 May 14;162(18). doi: 10.1063/5.0269885.
Poly(N-isopropylacrylamide) (pNIPAM) microgels exhibit a reversible thermoresponsive behavior, undergoing a volume phase transition. This property makes pNIPAM microgels highly appealing for diverse applications, including drug delivery, tissue engineering, and sensors, where temperature-triggered changes in size, charge, and mechanical properties are advantageous. However, a plethora of data available in the literature regarding the relationship between the crosslinking density and the above-mentioned properties of pNIPAM microgels necessitates a consolidation and re-examination. This study aims to address two key objectives: (1) elucidate the relationship between the crosslinking density and size/electrophoretic mobility of pNIPAM microgels, building upon existing knowledge, and (2) examine the influence of crosslinking density on transition temperatures, particularly the electrokinetic transition temperature, which is not well explored and understood. To achieve these objectives, we synthesized 20 batches of pNIPAM microgels using two distinct synthesis routes: 18 batches via conventional one-pot synthesis, with triplicate replicates for six crosslinking densities, and two batches of pNIPAM microgels via semi-batch synthesis, with a duplicate replicate for one crosslinking density. These microgels were characterized using a combination of dynamic light scattering to determine the size and thermoresponsive behavior, electrophoretic light scattering to analyze electrophoretic mobility, and atomic force microscopy to evaluate the structural morphology and assess stiffness. The insights from the characterization techniques enhance our understanding of how the crosslinking density influences the physical and electrokinetic properties of pNIPAM microgels, potentially creating a pathway for rational design of microgels tailored for specific applications.
聚(N-异丙基丙烯酰胺)(pNIPAM)微凝胶表现出可逆的热响应行为,经历体积相变。这一特性使得pNIPAM微凝胶在包括药物递送、组织工程和传感器等多种应用中极具吸引力,在这些应用中,温度触发的尺寸、电荷和机械性能变化是有利的。然而,文献中已有大量关于pNIPAM微凝胶交联密度与上述性能之间关系的数据,因此有必要进行整合和重新审视。本研究旨在实现两个关键目标:(1)在现有知识的基础上阐明pNIPAM微凝胶交联密度与尺寸/电泳迁移率之间的关系,(2)研究交联密度对转变温度的影响,特别是电动转变温度,这方面尚未得到充分探索和理解。为实现这些目标,我们使用两种不同的合成路线合成了20批pNIPAM微凝胶:18批通过传统的一锅法合成,针对六种交联密度进行了三次重复,以及两批通过半批量合成的pNIPAM微凝胶,针对一种交联密度进行了两次重复。这些微凝胶通过动态光散射组合进行表征以确定尺寸和热响应行为,通过电泳光散射分析电泳迁移率,并通过原子力显微镜评估结构形态和评估刚度。表征技术的见解增强了我们对交联密度如何影响pNIPAM微凝胶物理和电动性质的理解,有可能为针对特定应用的微凝胶的合理设计创造一条途径。