Peterson Paul O, Mercado Brandon Q, Miller Scott J
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.
J Am Chem Soc. 2025 May 21;147(20):17161-17169. doi: 10.1021/jacs.5c02720. Epub 2025 May 13.
The hydrogenation of the antibiotic thiostrepton with control over the site- and stereoselectivity of reduction is reported. Studies on model substrates designed to mimic aspects of the consecutive dimeric dehydroalanine (Dha) tail of thiostrepton first culminate in the development of an asymmetric hydrogenation method for a diverse set of bis(Dha) compounds. Monodentate phosphoramidite ligands (e.g., MonoPhos) are optimal and allow for selectivity of up to a 96:2:2:<1 ratio for doubly hydrogenated products. Subsequently, the protecting-group free, diastereomer-selective hydrogenation of the tail fragment of thiostrepton (Dha16 and Dha17) under mild conditions is presented with >80% selectivity for a single stereoisomer, relative to the sum of other detectable products. Opposite MonoPhos chirality results in alternative selectivity for the hydrogenated tail product, establishing ligand-controlled hydrogenation. The further study of ligands enabled hydrogenation of the internal dehydroalanine residue (Dha3), using sterically attenuated phosphoramidite ligands. Strikingly, ligand chirality dictates the stereochemical outcome at the sterically occluded Dha3, allowing for the synthesis of distinct stereoisomers, culminating in two distinct bis-hydrogenated isomers and two distinct tris-hydrogenated stereoisomers. Finally, hydrogenation with yet another phosphine ligand scaffold, a bidentate bisphosphine, results in the controlled formation of a single tetra-hydrogenated product. The structures and stereochemistry of the products are identified using multidimensional nuclear magnetic resonance methods, X-ray crystallography, and comparison to model substrates with confirmed absolute stereochemistry. The new thiostrepton derivatives are benchmarked for their antibiotic activity against representative antibiotic-resistant bacterial strains, revealing significant effects of Dha hydrogenation, and a number of new insights, most notably about the significance of Dha3 for antibiotic activity.
报道了抗生素硫链丝菌素的氢化反应,该反应可控制还原的位点和立体选择性。对旨在模拟硫链丝菌素连续二聚脱氢丙氨酸(Dha)尾部各方面的模型底物进行的研究,首先促成了一种用于多种双(Dha)化合物的不对称氢化方法的开发。单齿亚磷酰胺配体(如MonoPhos)是最优的,对于双氢化产物,其选择性可达96:2:2:<1的比例。随后,介绍了在温和条件下硫链丝菌素尾部片段(Dha16和Dha17)的无保护基非对映体选择性氢化反应,相对于其他可检测产物的总和,对单一立体异构体的选择性>80%。相反的MonoPhos手性导致氢化尾部产物具有不同的选择性,从而确立了配体控制的氢化反应。对配体的进一步研究使得使用空间位阻较小的亚磷酰胺配体能够实现内部脱氢丙氨酸残基(Dha3)的氢化反应。引人注目的是,配体手性决定了空间位阻较大的Dha3处的立体化学结果,从而能够合成不同的立体异构体,最终得到两种不同的双氢化异构体和两种不同的三氢化立体异构体。最后,使用另一种膦配体骨架——双齿双膦进行氢化反应,可控制形成单一的四氢化产物。通过多维核磁共振方法、X射线晶体学以及与具有确定绝对立体化学的模型底物进行比较,确定了产物的结构和立体化学。对新的硫链丝菌素衍生物针对代表性抗生素耐药细菌菌株的抗生素活性进行了基准测试,揭示了Dha氢化的显著影响以及一些新的见解,最值得注意的是Dha3对抗生素活性的重要性。