Tyagi Deepika, Laxmi Vijay, Irshad Ahsan, Parveen Abida, Alam Mehboob, Tian Yibin, Ouyang Zhengbiao
THz Technology Laboratory, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen University, Shenzhen 518060, China.
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Nanomaterials (Basel). 2025 Apr 27;15(9):663. doi: 10.3390/nano15090663.
Kagome lattices have attracted significant research interest due to their unique interplay of geometry, topology, and material properties. They provide deep insights into strongly correlated electron systems, novel quantum phases, and advanced material designs, making them fundamental in condensed matter physics and material engineering. This work presents an efficient method for terahertz (THz) wave generation across the entire THz spectrum, leveraging high-quality-factor Kagome-shaped silicon photonic crystal resonators. In the proposed simulation-based approach, an infrared (IR) single-frequency wave interacts with an induced resonance mode within the resonator, producing a THz beat frequency. This beat note is then converted into a standalone THz radiation (T-ray) wave using an amplitude demodulator. Simulations confirm the feasibility of our method, demonstrating that a conventional single-frequency wave can induce resonance and generate a stable beat frequency. The proposed technique is highly versatile, extending beyond THz generation to frequency conversion in electronics, optics, and acoustics, among other domains. Its high efficiency, compact design, and broad applicability offer a promising solution to challenges in THz technology. Furthermore, our findings establish a foundation for precise frequency manipulation, unlocking new possibilities in signal processing, sensing, detection, and communication systems.
Kagome晶格因其独特的几何结构、拓扑结构和材料特性之间的相互作用而引起了广泛的研究兴趣。它们为深入理解强关联电子系统、新型量子相和先进材料设计提供了深刻见解,使其在凝聚态物理和材料工程中具有基础性地位。这项工作提出了一种在整个太赫兹频谱范围内产生太赫兹(THz)波的有效方法,利用了高品质因数的Kagome形状的硅光子晶体谐振器。在所提出的基于模拟的方法中,红外(IR)单频波与谐振器内的感应共振模式相互作用,产生太赫兹拍频。然后使用幅度解调器将这个拍频转换为独立的太赫兹辐射(T射线)波。模拟结果证实了我们方法的可行性,表明传统的单频波可以诱导共振并产生稳定的拍频。所提出的技术具有高度的通用性,不仅适用于太赫兹波产生,还可扩展到电子学、光学和声学等领域的频率转换。其高效率、紧凑设计和广泛适用性为太赫兹技术面临的挑战提供了一个有前景的解决方案。此外,我们的研究结果为精确频率操控奠定了基础,为信号处理、传感、检测和通信系统开辟了新的可能性。