Simone Giuseppina
Dipartimento di Ingegneria Chimica, University of Napoli Federico II, Piazzale Tecchio 80., 80125 Napoli, Italy.
Department of Physics, New Uzbekistan University, Tashkent 100007, Uzbekistan.
Nanomaterials (Basel). 2025 Apr 28;15(9):671. doi: 10.3390/nano15090671.
Semiconductors underpin modern technology, enabling applications from power electronics and photovoltaics to communications and medical diagnostics. However, the industry faces pressing challenges, including shortages of critical raw materials and the unsustainable nature of conventional fabrication processes. Recent developments in quantum computing and topological quantum materials offer a transformative path forward. In particular, materials exhibiting non-Hermitian physics and topological protection, such as topological insulators and superconductors, enable robust, energy-efficient electronic states. These states are resilient to disorder and local perturbations, positioning them as ideal candidates for next-generation quantum devices. Non-Hermitian systems, which break traditional Hermitian constraints, have revealed phenomena like the skin effect, wherein eigenstates accumulate at boundaries, violating bulk-boundary correspondence. This effect has recently been observed in semiconductor-based quantum Hall devices, marking a significant milestone in condensed matter physics. By integrating these non-Hermitian topological principles into semiconductor technology, researchers can unlock new functionalities for fault-tolerant quantum computing, low-power electronics, and ultra-sensitive sensing platforms. This convergence of topology, quantum physics, and semiconductor engineering may redefine the future of electronic and photonic devices.
半导体是现代技术的基础,推动了从电力电子、光伏到通信和医学诊断等诸多应用的发展。然而,该行业面临着紧迫的挑战,包括关键原材料短缺以及传统制造工艺的不可持续性。量子计算和拓扑量子材料的最新进展提供了一条变革性的前进道路。特别是,展现非厄米物理和拓扑保护特性的材料,如拓扑绝缘体和超导体,能够实现稳健、节能的电子态。这些态对无序和局部微扰具有抗性,使其成为下一代量子器件的理想候选者。打破传统厄米约束的非厄米系统揭示了诸如趋肤效应等现象,其中本征态在边界处积累,违反了体-边界对应关系。最近在基于半导体的量子霍尔器件中观察到了这种效应,这标志着凝聚态物理领域的一个重要里程碑。通过将这些非厄米拓扑原理集成到半导体技术中,研究人员可以为容错量子计算、低功耗电子学和超灵敏传感平台解锁新功能。拓扑学、量子物理学和半导体工程学的这种融合可能会重新定义电子和光子器件的未来。