Peng Yuanqi, Su Lezhu, Liu Meng, Zeng Chen, Xiang Bo, Xie Zhuoyao, Hu Zijing, Zhou Nan
Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China.
College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Nanomaterials (Basel). 2025 May 6;15(9):697. doi: 10.3390/nano15090697.
The development of green, efficient, and stable pesticides for controlling agricultural pathogens remains a critical research focus. Elemental sulfur, although widely used for its bactericidal and insecticidal properties, suffers from aggregation, poor dispersibility, and limited contact with target organisms, restricting its effectiveness. In this study, we synthesized a novel biochar-sulfur composite by combining sustainable biochar with sulfur at low temperatures. The resulting material exhibited enhanced dispersibility and a five-fold increase in bactericidal efficacy compared to sulfur alone, as demonstrated in tests against and . Additionally, the composite maintained 80% efficacy after five cycles of use, highlighting its favorable cyclic performance. Mechanistic studies revealed that biochar accelerates sulfur's redox reaction, generating free radicals that drive efficient bactericidal action. This work provides a simple and sustainable approach for developing sulfur-based antimicrobial pesticides, offering new opportunities for sulfur utilization in agriculture.
开发用于控制农业病原体的绿色、高效和稳定的农药仍然是一个关键的研究重点。元素硫虽然因其杀菌和杀虫特性而被广泛使用,但存在聚集、分散性差以及与目标生物体接触有限的问题,限制了其有效性。在本研究中,我们通过在低温下将可持续生物炭与硫结合,合成了一种新型生物炭-硫复合材料。与单独的硫相比,所得材料表现出增强的分散性,杀菌效果提高了五倍,这在针对[具体对象1]和[具体对象2]的测试中得到了证明。此外,该复合材料在使用五个循环后仍保持80%的功效,突出了其良好的循环性能。机理研究表明,生物炭加速了硫的氧化还原反应,产生自由基,从而推动高效的杀菌作用。这项工作为开发基于硫的抗菌农药提供了一种简单且可持续的方法,为农业中硫的利用提供了新的机会。