PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.
Centre de Biologie Structurale, Université Montpellier, CNRS, Inserm, Montpellier, France.
Nat Nanotechnol. 2023 Nov;18(11):1311-1318. doi: 10.1038/s41565-023-01468-2. Epub 2023 Jul 31.
Thermal annealing is usually needed to direct the assembly of multiple complementary DNA strands into desired entities. We show that, with a magnesium-free buffer containing NaCl, complex cocktails of DNA strands and proteins can self-assemble isothermally, at room or physiological temperature, into user-defined nanostructures, such as DNA origamis, single-stranded tile assemblies and nanogrids. In situ, time-resolved observation reveals that this self-assembly is thermodynamically controlled, proceeds through multiple folding pathways and leads to highly reconfigurable nanostructures. It allows a given system to self-select its most stable shape in a large pool of competitive DNA strands. Strikingly, upon the appearance of a new energy minimum, DNA origamis isothermally shift from one initially stable shape to a radically different one, by massive exchange of their constitutive staple strands. This method expands the repertoire of shapes and functions attainable by isothermal self-assembly and creates a basis for adaptive nanomachines and nanostructure discovery by evolution.
热退火通常用于指导多个互补 DNA 链组装成所需的实体。我们表明,在不含镁的缓冲液中含有 NaCl,复杂的 DNA 链和蛋白质混合物可以在等温条件下,在室温或生理温度下,自组装成用户定义的纳米结构,如 DNA 折纸、单链瓦片组装和纳米网格。在原位、时间分辨的观察揭示了这种自组装是由热力学控制的,通过多个折叠途径进行,并导致高度可重构的纳米结构。它允许给定的系统在大量竞争 DNA 链中自我选择其最稳定的形状。引人注目的是,当出现新的能量最小值时,DNA 折纸通过其组成的订书钉链的大量交换,从最初的稳定形状等温地转变为完全不同的形状。这种方法扩展了通过等温自组装实现的形状和功能的范围,并为自适应纳米机器和通过进化发现纳米结构创造了基础。