Suppr超能文献

一种用于冷冻电镜亚断层图的具有分布外检测功能的抗噪声分类方法。

A noise-robust classification method for cryo-ET subtomograms with out-of-distribution detection.

作者信息

Meng Wenjia, Yu Xueshi, Zhang Tingting, Han Renmin

机构信息

School of Software, Shandong University, Jinan 250101, China.

College of Medical Information and Engineering, Ningxia Medical University, Yinchuan 750004, China.

出版信息

Bioinformatics. 2025 May 6;41(5). doi: 10.1093/bioinformatics/btaf274.

Abstract

MOTIVATION

Cryogenic electron tomography (cryo-ET) enables high-resolution 3D reconstruction of biological samples, with accurate subtomogram classification critical for structural analysis. However, current subtomogram classification methods often struggle with out-of-distribution (OOD) data issue, causing misclassification and mismatched structures.

RESULTS

To solve this problem, we propose a unified subtomogram classification framework that incorporates OOD detection to distinguish unknown (OOD) from known (in-distribution, ID) classes and predict labels for ID data, thereby enhancing existing subtomogram classification methods. Within this framework, we develop a noise-robust classification method that integrates a 3D discrete wavelet transform-based encoder to reduce high-frequency noise and extract robust features. Additionally, we incorporate a Mahalanobis distance-based OOD detector with a reliable metric for 3D subtomograms and introduce an adaptive classifier that adjusts to accommodate datasets of varying scales. The experimental and visualization results demonstrate that our noise-robust method improves subtomogram classification accuracy and effectively models features while enhancing OOD detection.

AVAILABILITY AND IMPLEMENTATION

Our code is available at https://github.com/yxs1137/Subtomo-Classification-with-OOD.git. The real data used in this study can be accessed through CryoET Data Portal.

摘要

动机

低温电子断层扫描(cryo-ET)能够对生物样本进行高分辨率三维重建,准确的子断层图分类对于结构分析至关重要。然而,当前的子断层图分类方法常常难以解决分布外(OOD)数据问题,导致错误分类和结构不匹配。

结果

为了解决这个问题,我们提出了一个统一的子断层图分类框架,该框架纳入了OOD检测,以区分未知(OOD)和已知(分布内,ID)类别,并为ID数据预测标签,从而增强现有的子断层图分类方法。在此框架内,我们开发了一种抗噪声分类方法,该方法集成了基于三维离散小波变换的编码器,以减少高频噪声并提取鲁棒特征。此外,我们将基于马氏距离的OOD检测器与用于三维子断层图的可靠度量相结合,并引入了一种自适应分类器,以适应不同规模的数据集。实验和可视化结果表明,我们的抗噪声方法提高了子断层图分类的准确性,有效地对特征进行建模,同时增强了OOD检测。

可用性和实现

我们的代码可在https://github.com/yxs1137/Subtomo-Classification-with-OOD.git获取。本研究中使用的真实数据可通过低温电子断层扫描数据门户获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4900/12106275/3f4d5a8e4c7d/btaf274f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验