Suppr超能文献

一种使用全切片图像对透明细胞肾细胞癌进行核分级的人工智能模型:一项回顾性、多中心诊断研究。

An artificial intelligence model for nuclear grading of clear cell renal cell carcinoma using whole slide images: a retrospective, multicenter, diagnostic study.

作者信息

Zheng Qingyuan, Wei Li, Zhou Yang, Yang Rui, Jiao Panpan, Mei Haonan, Wang Kai, Ni Xinmiao, Yang Xiangxiang, Wu Jiejun, Fan Junjie, Liu Tian, Yuan Jingping, Weng Xiaodong, Liu Xiuheng, Chen Zhiyuan

机构信息

Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

出版信息

Int J Surg. 2025 Jul 1;111(7):4400-4411. doi: 10.1097/JS9.0000000000002484. Epub 2025 May 12.

Abstract

BACKGROUND

The pathological assessment of International Society of Urological Pathology (ISUP) nuclear grading is crucial for the management of clear cell renal cell carcinoma (ccRCC). We aimed to develop an artificial intelligence (AI)-based, high-efficiency, and high-accuracy ccRCC ISUP Grading Diagnostic System (RIGDAS) and evaluate its clinical application value.

METHODS

In this multicenter, retrospective, diagnostic study, consecutive ccRCC patients who underwent partial or complete nephrectomy between 1 June 2014 and 1 June 2024 across three Chinese hospitals and two public cohorts were included. Pathological slides from these surgeries were collected and digitized into whole slide images for model development and validation. The primary endpoint was the area under the receiver operating characteristic curve (AUC) of RIGDAS. Additionally, the performance and review time of pathologists assisted with RIGDAS were evaluated.

RESULTS

A total of 5697 slides from 1807 ccRCC patients were collected and digitized for training and validating RIGDAS. Across the training and validation datasets, RIGDAS achieved an AUC ranging from 0.943 (95% confidence interval [CI], 0.927-0.971) to 0.980 (0.960-1.989). In the human-AI comparison and collaboration study, RIGDAS achieved an accuracy (0.930 [0.907-0.951]) that was 3.3-4.3% higher than the accuracy of two junior pathologists (0.897 [0.883-0.916], P = 0.004; 0.887 [0.871-0.904], P = 0.001) and was comparable to the accuracy of two senior pathologists (0.960 [0.948-0.977] and 0.970 [0.961-0.986], both P > 0.05). Furthermore, RIGDAS significantly improved the diagnostic accuracy of the two junior pathologists to the level of the senior pathologists ( P > 0.05) and greatly reduced the slide review time for all four pathologists (20.5-45.1%, all P < 0.0001).

CONCLUSION

RIGDAS demonstrated decent ability in diagnosing ISUP nuclear grading in ccRCC, reducing the likelihood of misdiagnosis by pathologists, and decreasing the time required for pathological slide review, highlighting its potential for clinical application.

摘要

背景

国际泌尿病理学会(ISUP)核分级的病理评估对于透明细胞肾细胞癌(ccRCC)的管理至关重要。我们旨在开发一种基于人工智能(AI)的、高效且高精度的ccRCC ISUP分级诊断系统(RIGDAS),并评估其临床应用价值。

方法

在这项多中心、回顾性诊断研究中,纳入了2014年6月1日至2024年6月1日期间在中国三家医院接受部分或全肾切除术的连续ccRCC患者以及两个公共队列。收集这些手术的病理切片并将其数字化为全切片图像,用于模型开发和验证。主要终点是RIGDAS的受试者操作特征曲线下面积(AUC)。此外,还评估了使用RIGDAS辅助的病理学家的表现和阅片时间。

结果

共收集并数字化了1807例ccRCC患者的5697张切片,用于训练和验证RIGDAS。在训练和验证数据集中,RIGDAS的AUC范围为0.943(95%置信区间[CI],0.927 - 0.971)至0.980(0.960 - 1.989)。在人机对比与协作研究中,RIGDAS的准确率为0.930(0.907 - 0.951),比两名初级病理学家的准确率(0.897 [0.883 - 0.916],P = 0.004;0.887 [0.871 - 0.904],P = 0.001)高3.3 - 4.3%,与两名高级病理学家的准确率(0.960 [0.948 - 0.977]和0.970 [0.961 - 0.986],均P > 0.05)相当。此外,RIGDAS显著提高了两名初级病理学家的诊断准确率至高级病理学家的水平(P > 0.05),并大幅缩短了所有四名病理学家的切片阅片时间(20.5 - 45.1%,均P < 0.0001)。

结论

RIGDAS在诊断ccRCC的ISUP核分级方面表现出良好的能力,降低了病理学家误诊的可能性,并减少了病理切片阅片所需的时间,凸显了其临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验