Suppr超能文献

IBDAIM:用于分析肠道活检病理图像以辅助炎症性肠病综合诊断的人工智能

IBDAIM:Artificial intelligence for analyzing intestinal biopsies pathological images for assisted integrated diagnostic of inflammatory bowel disease.

作者信息

Cai Chengfei, Shi Qianyun, Liu Mingxin, Li Jun, Zhou Yangshu, Xu Andi, Zhang Dan, Jiao Yiping, Liu Yao, Cui Xiaobin, Chen Jun, Xu Jun, Sun Qi

机构信息

College of Information Engineering, Taizhou University, Taizhou 225300, Jiangsu Province, PR China; Jiangsu Key Laboratory of Intelligent Medical Image Computing, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, PR China.

Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, PR China.

出版信息

Int J Med Inform. 2025 Jun 23;203:106024. doi: 10.1016/j.ijmedinf.2025.106024.

Abstract

BACKGROUND

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is challenging to diagnose accurately from pathological images due to its complex histological features. This study aims to develop an artificial intelligence (AI) model, IBDAIM, to assist pathologists in quickly and accurately diagnosing IBD by analyzing whole-slide images (WSIs) of intestinal biopsies.

METHODS

This retrospective cohort study used data from two institutions, Nanjing Drum Tower Hospital (NDTH) and Zhujiang Hospital (ZJH). The NDTH dataset was randomly divided into a model development set and an internal test set, while the ZJH dataset served as an external validation set. We developed a weakly supervised deep learning model, IBDAIM, that uses WSI-level diagnostic labels without detailed annotation. The model integrates features from patch-level predictions using Patch Likelihood Histogram (PLH) and Bag of Words (BoW) to build WSI-level representations. Performance was evaluated using area under the receiver operating characteristic curve (AUROC), accuracy (ACC), sensitivity, and specificity. Probability plots and heatmaps were generated to analyze and visualize the diagnostic labels and organizational results of WSIs. Additionally, the model was applied to assist pathologists in diagnosis, and the improvement in diagnostic performance was assessed.

RESULTS

In the normal intestinal mucosa vs. IBD task, the internal test cohort achieved an AUROC of 0.998 (95% CI 0.995-1.000) and ACC of 0.982, while the external test cohorts achieved an AUROC of 0.967 (95% CI 0.939-0.995) and ACC of 0.934. For the CD vs. UC task, the internal test cohort achieved an AUROC of 0.972 (95% CI 0.942-1.000) and ACC of 0.901, and the external test cohorts achieved an AUROC of 0.952 (95% CI 0.923-0.982) and ACC of 0.949. The model's performance exceeded that of five pathologists, and AI assistance significantly improved diagnostic accuracy across all pathologists.

CONCLUSION

The IBDAIM model demonstrates high performance in diagnosing IBD biopsy pathological images and can effectively assist pathologists in identifying normal intestinal mucosa, CD, and UC tissues. This AI tool enhances diagnostic efficiency and accuracy, supporting better clinical decision-making and patient outcomes.

摘要

背景

炎症性肠病(IBD),包括克罗恩病(CD)和溃疡性结肠炎(UC),由于其复杂的组织学特征,从病理图像中准确诊断具有挑战性。本研究旨在开发一种人工智能(AI)模型,即IBDAIM,通过分析肠道活检的全切片图像(WSIs)来协助病理学家快速准确地诊断IBD。

方法

这项回顾性队列研究使用了来自南京鼓楼医院(NDTH)和珠江医院(ZJH)两个机构的数据。NDTH数据集被随机分为模型开发集和内部测试集,而ZJH数据集用作外部验证集。我们开发了一种弱监督深度学习模型IBDAIM,它使用WSI级别的诊断标签而无需详细注释。该模型使用补丁似然直方图(PLH)和词袋模型(BoW)整合来自补丁级预测的特征,以构建WSI级别的表示。使用受试者工作特征曲线下面积(AUROC)、准确率(ACC)、敏感性和特异性来评估性能。生成概率图和热图以分析和可视化WSIs的诊断标签和组织结果。此外,该模型被应用于协助病理学家进行诊断,并评估诊断性能的提高。

结果

在正常肠黏膜与IBD任务中,内部测试队列的AUROC为0.998(95%CI 0.995 - 1.000),ACC为0.982,而外部测试队列的AUROC为0.967(95%CI 0.939 - 0.995),ACC为0.934。对于CD与UC任务,内部测试队列的AUROC为0.972(95%CI 0.942 - 1.000),ACC为0.901,外部测试队列的AUROC为0.952(95%CI 0.923 - 0.982),ACC为0.949。该模型的性能超过了五名病理学家,并且AI辅助显著提高了所有病理学家的诊断准确性。

结论

IBDAIM模型在诊断IBD活检病理图像方面表现出高性能,并且可以有效地协助病理学家识别正常肠黏膜、CD和UC组织。这种AI工具提高了诊断效率和准确性,支持更好的临床决策和患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验