Pelletier Romain, Nahle Dina, Sarr Mareme, Bourdais Alexis, Morel Isabelle, Le Daré Brendan, Gicquel Thomas
NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, 35000, Rennes, France.
Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France.
Arch Toxicol. 2025 May 13. doi: 10.1007/s00204-025-04049-5.
New psychoactive substances (NPS) pose an increasing challenge for clinical and forensic toxicology due to the initial lack of analytical and metabolic data. This study evaluates the performance of four in silico prediction tools (GLORYx, BioTransformer 3.0, SyGMa, and MetaTrans) in predicting the metabolism of seven NPS from five major chemical families (cathinones, synthetic cannabinoids, synthetic opioids, designer benzodiazepines, and dissociative anesthetics). The predicted metabolites were compared to those reported in the literature. The results revealed that SyGMa was the most exhaustive tool, predicting 437 metabolites, whereas MetaTrans predicted the fewest (61). GLORYx uniquely identified glutathione conjugation, while BioTransformer was particularly effective in predicting phase I reactions. However, no single tool provided complete predictions. Combining the four tools enabled the identification of several key biomarkers consistent with experimental data, such as m/z 238.1443 for eutylone and m/z 381.1926 for etonitazepipne. These findings highlight the need for integrated approaches to optimize metabolite prediction. Future advancements in artificial intelligence-based models could reduce false positives and enhance the accuracy of predictions, thus reinforcing the role of in silico tools in toxicological investigations.
由于最初缺乏分析和代谢数据,新型精神活性物质(NPS)给临床和法医毒理学带来了越来越大的挑战。本研究评估了四种计算机预测工具(GLORYx、BioTransformer 3.0、SyGMa和MetaTrans)在预测来自五个主要化学家族(卡西酮、合成大麻素、合成阿片类药物、设计苯二氮卓类药物和解离性麻醉剂)的七种NPS代谢情况方面的性能。将预测的代谢物与文献中报道的代谢物进行比较。结果表明,SyGMa是最详尽的工具,预测了437种代谢物,而MetaTrans预测的最少(61种)。GLORYx独特地识别了谷胱甘肽结合,而BioTransformer在预测I相反应方面特别有效。然而,没有一个工具能提供完整的预测。结合这四种工具能够识别出与实验数据一致的几个关键生物标志物,如乙酮的m/z 238.1443和依托尼泰平的m/z 381.1926。这些发现凸显了采用综合方法优化代谢物预测的必要性。基于人工智能的模型的未来进展可以减少假阳性并提高预测的准确性,从而加强计算机工具在毒理学调查中的作用。