Patra Pradipta, Das Manali, Ravindran Somdutt, Ghosh Amit
School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
Department of Biosciences and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
ACS Synth Biol. 2025 Jun 20;14(6):2117-2129. doi: 10.1021/acssynbio.5c00043. Epub 2025 May 13.
Lignocellulose biorefinery provides a sustainable supply of fuels and value-added compounds. However, the major limitation of its application is the inefficient co-utilization of glucose and xylose by the model yeast. Here, we report for the first time on the metabolic engineering of non-model industrial yeast for co-utilization of glucose and xylose sustainably using lignocellulosic feedstock. Co-utilization in was achieved by heterologous expression of XYLl, XYL2, and XYL3 and overexpression of TAL1 and TKL1, which eliminated the imbalanced cofactor specificity, reduced xylitol accumulation, and inadequately formed xylulose-5-phosphate. Further, this is the first report of the development of a robust genome engineering platform for diploid that facilitated gene modification in both alleles of this yeast. Here, the genes were optimally expressed under P, the strongest promoter identified among the other three native promoters P, P, and P. Moreover, the engineered strain was used for metabolic flux analysis using our previously developed genome-scale metabolic model (iPN730), which suggested the diversion of carbon flux toward competing pathways that can be targeted to achieve further strain improvement. During batch fermentation in a bioreactor, the recombinant host utilized 3.85% glucose and 2% xylose, producing an ethanol titer and yield of 23.65 g/L and 0.42 g/g sugar, respectively, with a maximum sugar consumption rate of 1.57 g/L/h. Further, fermentation using biomass hydrolysate in a bioreactor resulted in the complete consumption of xylose at a rate of 0.33 g/L/h without any xylitol accumulation. Altogether, this work represents the creation of an efficient glucose-xylose-co-utilizing diploid strain that can be used in lignocellulosic biorefineries.
木质纤维素生物精炼能够可持续地提供燃料和增值化合物。然而,其应用的主要限制在于模式酵母对葡萄糖和木糖的协同利用效率低下。在此,我们首次报道了对非模式工业酵母进行代谢工程改造,以利用木质纤维素原料可持续地协同利用葡萄糖和木糖。通过异源表达XYL1、XYL2和XYL3以及过表达TAL1和TKL1实现了在[具体酵母名称]中的协同利用,这消除了辅因子特异性失衡,减少了木糖醇积累,并使5-磷酸木酮糖的形成不足。此外,这是首次报道为二倍体[具体酵母名称]开发强大的基因组工程平台,该平台有助于对该酵母的两个等位基因进行基因修饰。在此,这些基因在P[具体启动子名称]下实现了最佳表达,P[具体启动子名称]是在其他三个天然启动子P[其他启动子名称1]、P[其他启动子名称2]和P[其他启动子名称3]中鉴定出的最强启动子。此外,使用我们之前开发的[具体酵母名称]基因组规模代谢模型(iPN730)对工程菌株进行代谢通量分析,结果表明碳通量转向了可作为靶点以进一步改进菌株的竞争途径。在生物反应器中的分批发酵过程中,重组宿主利用了3.85%的葡萄糖和2%的木糖,乙醇产量和产率分别为23.65 g/L和0.42 g/g糖,最大糖消耗速率为1.57 g/L/h。此外,在生物反应器中使用生物质水解产物进行发酵,木糖以0.33 g/L/h的速率被完全消耗,且没有任何木糖醇积累。总之,这项工作代表创建了一种可用于木质纤维素生物精炼厂的高效葡萄糖-木糖协同利用二倍体[具体酵母名称]菌株。