Zhang Junqi, Li Yuanxiu, Lv Wenjing, You Zixuan, Yu Huan, Zhang Baocai, Liu Qijing, Zou Jing, Chen Tao, Li Feng, Song Hao
State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
ACS Synth Biol. 2025 Jun 20;14(6):2305-2315. doi: 10.1021/acssynbio.5c00178. Epub 2025 Jun 5.
Converting lignocellulose into bioelectricity through a bioelectrocatalytic system (BES) has emerged as a promising approach to addressing environmental pollution and energy regeneration challenges. However, practical application of BES is significantly constrained by the fact that the electroactive biocatalyst lacks the essential metabolic pathways and enzymes required for utilizing lignocellulose for cell growth and power generation. Here, to realize clean electricity production from lignocellulose hydrolysate, an artificial microbial consortium comprising , , and was developed. In this consortium, is responsible for converting glucose into lactate; metabolizes glucose and xylose into riboflavin; and then employs lactate as an electron donor and riboflavin as an electron shuttle to facilitate electricity generation. Subsequently, to increase substrate conversion efficiency of the microbial consortium, three key genes , , and encoding lactate dehydrogenase, GTP cyclohydrolase, and d-lactate dehydrogenase, were expressed in , , and , respectively, which accelerated glucose-to-lactate conversion, riboflavin synthesis, and lactate metabolism. Also, to accelerate the extracellular electron transfer (EET) capacity of the microbial consortium, the gene from encoding the outer membrane -type cytochrome was further expressed in . Finally, to further enhance the interfacial EET capability of the microbial consortium, a 3D microbiota biohybrid system @CF&GO consisting of carbon felts and graphene oxide was developed to reduce the internal resistance of BES. The results showed that the artificial biohybrid system could obtain a maximum power density of ∼739.40 mW m using lignocellulosic hydrolysate as the carbon source. This system expands the range of carbon sources available to for efficient power generation from the lignocellulosic hydrolysate.
通过生物电催化系统(BES)将木质纤维素转化为生物电,已成为应对环境污染和能源再生挑战的一种有前景的方法。然而,BES的实际应用受到显著限制,因为电活性生物催化剂缺乏利用木质纤维素进行细胞生长和发电所需的基本代谢途径和酶。在此,为了实现从木质纤维素水解物中清洁发电,开发了一种由[具体微生物名称1]、[具体微生物名称2]和[具体微生物名称3]组成的人工微生物群落。在这个群落中,[具体微生物名称1]负责将葡萄糖转化为乳酸;[具体微生物名称2]将葡萄糖和木糖代谢为核黄素;然后[具体微生物名称3]利用乳酸作为电子供体,核黄素作为电子穿梭体来促进发电。随后,为了提高微生物群落的底物转化效率,分别在[具体微生物名称1]、[具体微生物名称2]和[具体微生物名称3]中表达了编码乳酸脱氢酶、GTP环水解酶和d - 乳酸脱氢酶的三个关键基因[基因名称1]、[基因名称2]和[基因名称3],这加速了葡萄糖到乳酸的转化、核黄素的合成以及乳酸的代谢。此外,为了加速微生物群落的细胞外电子转移(EET)能力,在[具体微生物名称3]中进一步表达了来自[具体微生物名称4]的编码外膜型细胞色素的[基因名称4]基因。最后,为了进一步增强微生物群落的界面EET能力,开发了一种由碳毡和氧化石墨烯组成的3D微生物生物杂交系统@CF&GO,以降低BES的内阻。结果表明,该人工生物杂交系统以木质纤维素水解物为碳源时,可获得约739.40 mW m的最大功率密度。该系统扩展了[具体微生物名称3]可利用的碳源范围,以实现从木质纤维素水解物中高效发电。