Suppr超能文献

通过文本引导扩散模型改进罕见甲状腺癌亚型的人工智能模型。

Improving AI models for rare thyroid cancer subtype by text guided diffusion models.

作者信息

Dai Fang, Yao Siqiong, Wang Min, Zhu Yicheng, Qiu Xiangjun, Sun Peng, Qiu Cheng, Yin Jisheng, Shen Guangtai, Sun Jingjing, Wang Maofeng, Wang Yun, Yang Zheyu, Sang Jianfeng, Wang Xiaolei, Sun Fenyong, Cai Wei, Zhang Xingcai, Lu Hui

机构信息

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

SJTU-Yale Joint Center of Biostatistics and Data Science, Technical Center for Digital Medicine, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nat Commun. 2025 May 13;16(1):4449. doi: 10.1038/s41467-025-59478-8.

Abstract

Artificial intelligence applications in oncology imaging often struggle with diagnosing rare tumors. We identify significant gaps in detecting uncommon thyroid cancer types with ultrasound, where scarce data leads to frequent misdiagnosis. Traditional augmentation strategies do not capture the unique disease variations, hindering model training and performance. To overcome this, we propose a text-driven generative method that fuses clinical insights with image generation, producing synthetic samples that realistically reflect rare subtypes. In rigorous evaluations, our approach achieves substantial gains in diagnostic metrics, surpasses existing methods in authenticity and diversity measures, and generalizes effectively to other private and public datasets with various rare cancers. In this work, we demonstrate that text-guided image augmentation substantially enhances model accuracy and robustness for rare tumor detection, offering a promising avenue for more reliable and widespread clinical adoption.

摘要

人工智能在肿瘤成像中的应用在诊断罕见肿瘤时常常面临困难。我们发现,在利用超声检测不常见的甲状腺癌类型方面存在重大差距,数据稀缺导致频繁误诊。传统的增强策略无法捕捉独特的疾病变异,阻碍了模型训练和性能。为克服这一问题,我们提出了一种文本驱动的生成方法,将临床见解与图像生成相结合,生成逼真反映罕见亚型的合成样本。在严格评估中,我们的方法在诊断指标上取得了显著提升,在真实性和多样性指标上超过了现有方法,并能有效推广到其他包含各种罕见癌症的公私数据集。在这项工作中,我们证明了文本引导的图像增强显著提高了罕见肿瘤检测模型的准确性和鲁棒性,为更可靠、更广泛的临床应用提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaa2/12075465/6cf81644118a/41467_2025_59478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验