Suppr超能文献

革新睡眠障碍诊断:一种采用遗传和Q学习技术优化的多任务学习方法。

Revolutionizing sleep disorder diagnosis: A Multi-Task learning approach optimized with genetic and Q-Learning techniques.

作者信息

Khanmohmmadi Soraya, Khatibi Toktam, Tajeddin Golnaz, Akhondzadeh Elham, Shojaee Amir

机构信息

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran.

Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.

出版信息

Sci Rep. 2025 May 13;15(1):16603. doi: 10.1038/s41598-025-01893-4.

Abstract

Adequate sleep is crucial for maintaining a healthy lifestyle, and its deficiency can lead to various sleep-related disorders. Identifying these disorders early is essential for effective treatment, which traditionally relies on polysomnogram (PSG) tests. However, diagnosing sleep disorders with high accuracy based solely on electroencephalogram (EEG) signals, rather than using various signals in a complex PSG, can reduce the time and cost required, and the need for specialized signal devices, as well as increase accessibility and usability. Previous studies have focused on traditional machine learning (ML) methods such as K-Nearest Neighbors (KNNs), Support Vector Machines (SVMs), and ensemble learning methods for sleep disorders analysis. However, these models require manual methods for feature extraction, and the prediction accuracy greatly depends on the type of feature extracted. Additionally, the EEG signal datasets are small and heterogeneous, challenging traditional machine learning and deep learning models. The study proposes an innovative multi-task learning convolutional neural network with a partially shared structure that uses frequency-time images generated from EEG signals to address these limitations. The proposed technique makes two predictions using non-shared features from time-frequency images created through Short Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), one prediction from shared features, and the final prediction is a combination of these three predictions. The weights for this combination were optimized using the genetic algorithm and the Q-learning algorithm, aiming to minimize loss and maximize accuracy. The study utilizes a dataset involving 26 participants to examine the impact of Partial Sleep Deprivation (PSD) on EEG recordings. The outcomes demonstrated that the multi-task learning model using these two optimization methods, attained 98% accuracy on the test data for predicting partial sleep deprivation. This automated diagnostic model is an efficient supporting tool for rapidly and effectively diagnosing sleep disorders. It swiftly and precisely evaluates sleep data, minimizing the time and effort required by the patient and the physician.

摘要

充足的睡眠对于维持健康的生活方式至关重要,而睡眠不足会导致各种与睡眠相关的疾病。早期识别这些疾病对于有效治疗至关重要,传统上治疗依赖于多导睡眠图(PSG)测试。然而,仅基于脑电图(EEG)信号而非使用复杂PSG中的各种信号来高精度诊断睡眠障碍,可以减少所需的时间和成本,以及对专用信号设备的需求,同时提高可及性和可用性。以往的研究主要集中在传统机器学习(ML)方法,如K近邻(KNN)、支持向量机(SVM)以及用于睡眠障碍分析的集成学习方法。然而,这些模型需要手动进行特征提取,预测准确性很大程度上取决于所提取特征的类型。此外,EEG信号数据集规模小且具有异质性,对传统机器学习和深度学习模型构成挑战。该研究提出了一种创新的具有部分共享结构的多任务学习卷积神经网络,利用从EEG信号生成的频率-时间图像来解决这些局限性。所提出的技术使用通过短时傅里叶变换(STFT)和连续小波变换(CWT)创建的时频图像中的非共享特征进行两项预测,一项预测来自共享特征,最终预测是这三项预测的组合。使用遗传算法和Q学习算法对该组合的权重进行了优化,旨在最小化损失并最大化准确性。该研究利用一个涉及26名参与者的数据集来研究部分睡眠剥夺(PSD)对EEG记录的影响。结果表明,使用这两种优化方法的多任务学习模型在预测部分睡眠剥夺的测试数据上达到了98%的准确率。这种自动诊断模型是快速有效诊断睡眠障碍的高效支持工具。它能迅速且精确地评估睡眠数据,将患者和医生所需的时间和精力降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcfc/12075865/7784624c08ce/41598_2025_1893_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验