Suppr超能文献

机器学习在预测睡眠障碍方面的潜力:回归和分类模型的综合分析

Potential of Machine Learning for Predicting Sleep Disorders: A Comprehensive Analysis of Regression and Classification Models.

作者信息

Alazaidah Raed, Samara Ghassan, Aljaidi Mohammad, Haj Qasem Mais, Alsarhan Ayoub, Alshammari Mohammed

机构信息

Department of Data Science and AI, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan.

Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan.

出版信息

Diagnostics (Basel). 2023 Dec 22;14(1):27. doi: 10.3390/diagnostics14010027.

Abstract

Sleep disorder is a disease that can be categorized as both an emotional and physical problem. It imposes several difficulties and problems, such as distress during the day, sleep-wake disorders, anxiety, and several other problems. Hence, the main objective of this research was to utilize the strong capabilities of machine learning in the prediction of sleep disorders. In specific, this research aimed to meet three main objectives. These objectives were to identify the best regression model, the best classification model, and the best learning strategy that highly suited sleep disorder datasets. Considering two related datasets and several evaluation metrics that were related to the tasks of regression and classification, the results revealed the superiority of the MultilayerPerceptron, SMOreg, and KStar regression models compared with the other twenty three regression models. Furthermore, IBK, RandomForest, and RandomizableFilteredClassifier showed superior performance compared with other classification models that belonged to several learning strategies. Finally, the Function learning strategy showed the best predictive performance among the six considered strategies in both datasets and with respect to the most evaluation metrics.

摘要

睡眠障碍是一种既可以归类为情感问题又可以归类为身体问题的疾病。它带来了一些困难和问题,比如白天的困扰、睡眠-觉醒障碍、焦虑以及其他一些问题。因此,本研究的主要目标是利用机器学习的强大能力来预测睡眠障碍。具体而言,本研究旨在实现三个主要目标。这些目标是识别最适合睡眠障碍数据集的最佳回归模型、最佳分类模型和最佳学习策略。考虑到两个相关数据集以及与回归和分类任务相关的几个评估指标,结果表明,与其他二十三个回归模型相比,多层感知器、SMOreg和KStar回归模型具有优越性。此外,与属于几种学习策略的其他分类模型相比,IBK、随机森林和可随机化过滤分类器表现出优越的性能。最后,在两个数据集中以及就大多数评估指标而言,函数学习策略在所考虑的六种策略中表现出最佳的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf9/10802836/c5d73fd2c087/diagnostics-14-00027-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验