Suppr超能文献

在基于网络的癌症分层分析中整合遗传和基因表达数据。

Integrating genetic and gene expression data in network-based stratification analysis of cancers.

作者信息

Liou Kenny, Wang Ji-Ping

机构信息

Stevens Neuroimaging and Informatics Institute, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA.

Department of Statistics and Data Science, Northwestern University, 2006 Sheridan Road, Evanston, IL, 60208, USA.

出版信息

BMC Bioinformatics. 2025 May 13;26(1):126. doi: 10.1186/s12859-025-06143-y.

Abstract

BACKGROUND

Cancers are complex diseases that have heterogeneous genetic drivers and varying clinical outcomes. A critical area of cancer research is organizing patient cohorts into subtypes and associating subtypes with clinical and biological outcomes for more effective prognosis and treatment. Large-scale studies have collected a plethora of omics data across multiple tumor types, providing an extensive dataset for stratifying patient cohorts. Network-based stratification (NBS) approaches have been presented to classify cancer tumors using somatic mutation data. A challenge in cancer stratification is integrating omics data to yield clinically meaningful subtypes. In this study, we investigate a novel approach to the NBS framework by integrating somatic mutation data with RNA sequencing data and investigating the effectiveness of integrated NBS on three cancers: ovarian, bladder, and uterine cancer.

RESULTS

We show that integrated NBS subtypes are more significantly associated with overall survival or histology. Specifically, we observe that integrated NBS subtypes for ovarian and bladder cancer were more significantly associated with patient survival than single-data type NBS subtypes, even when accounting for covariates. In addition, we show that integrated NBS subtypes for bladder and uterine are more significantly associated with tumor histology than single-data type NBS subtypes. Integrated NBS networks also reveal highly influential genes that span across multiple integrated NBS subtypes and subtype-specific genes. Pathway enrichment analysis of integrated NBS subtypes reveal overarching biological differences between subtypes. These genes and pathways are involved in a heterogeneous set of cell functions, including ubiquitin homeostasis, p53 regulation, cytokine and chemokine signaling, and cell proliferation, emphasizing the importance of identifying not only cancer-specific gene drivers but also subtype-specific tumor drivers.

CONCLUSIONS

Our study highlights the significance of integrating multi-omics data within the NBS framework to enhance cancer subtyping, specifically its utility in offering profound implications for personalized prognosis and treatment strategies. These insights contribute to the ongoing advancement of computational subtyping methods to uncover more targeted and effective therapeutic treatments while facilitating the discovery of cancer driver genes.

摘要

背景

癌症是复杂的疾病,具有异质性的基因驱动因素和不同的临床结果。癌症研究的一个关键领域是将患者队列组织成亚型,并将亚型与临床和生物学结果相关联,以实现更有效的预后和治疗。大规模研究已经收集了多种肿瘤类型的大量组学数据,为分层患者队列提供了广泛的数据集。基于网络的分层(NBS)方法已被提出用于使用体细胞突变数据对癌症肿瘤进行分类。癌症分层中的一个挑战是整合组学数据以产生具有临床意义的亚型。在本研究中,我们通过将体细胞突变数据与RNA测序数据整合,并研究整合的NBS在三种癌症(卵巢癌、膀胱癌和子宫癌)上的有效性,来探究NBS框架的一种新方法。

结果

我们表明,整合的NBS亚型与总生存期或组织学的相关性更强。具体而言,我们观察到,即使考虑协变量,卵巢癌和膀胱癌的整合NBS亚型与患者生存期的相关性也比单数据类型的NBS亚型更强。此外,我们表明,膀胱癌和子宫癌的整合NBS亚型与肿瘤组织学的相关性比单数据类型的NBS亚型更强。整合的NBS网络还揭示了跨越多个整合NBS亚型的高影响力基因和亚型特异性基因。整合NBS亚型的通路富集分析揭示了亚型之间总体的生物学差异。这些基因和通路涉及一系列异质的细胞功能,包括泛素稳态、p53调节、细胞因子和趋化因子信号传导以及细胞增殖,强调了不仅识别癌症特异性基因驱动因素而且识别亚型特异性肿瘤驱动因素的重要性。

结论

我们的研究强调了在NBS框架内整合多组学数据以增强癌症亚型分类的重要性,特别是其在为个性化预后和治疗策略提供深刻见解方面的效用。这些见解有助于推动计算亚型分类方法的不断进步,以发现更具针对性和有效的治疗方法,同时促进癌症驱动基因的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd41/12070578/24ed739dad90/12859_2025_6143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验