Suppr超能文献

机器学习和多组学数据揭示了基于驱动基因的肝细胞癌分子亚型,以实现精准治疗。

Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment.

机构信息

Faculty of Environment and Life of Beijing University of Technology, Beijing, China.

出版信息

PLoS Comput Biol. 2024 May 10;20(5):e1012113. doi: 10.1371/journal.pcbi.1012113. eCollection 2024 May.

Abstract

The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.

摘要

肝细胞癌(HCC)的异质性是有效治疗的障碍。将高度异质的 HCC 分为具有相似特征的分子亚型对于个体化抗肿瘤治疗至关重要。尽管驱动基因在癌症进展中起着关键作用,但它们在 HCC 亚型划分中的潜力在很大程度上被忽视了。本研究旨在利用驱动基因构建 HCC 亚型模型并揭示其分子机制。利用一种新的计算框架,我们根据突变方面将最初确定的 96 个驱动基因扩展到 1192 个,根据驱动失调方面又增加了 233 个。然后,这些基因被用作进一步分析的分层标记。开发了一种新的多组学亚型分类算法,利用鉴定的分层基因的突变和表达数据。该算法成功地将 HCC 分为两个不同的亚型,CLASS A 和 CLASS B,在生存结果方面表现出显著差异。整合多组学和单细胞数据揭示了这些亚型在转录组学、突变、拷贝数变异和表观基因组学方面的显著差异。此外,我们的预后模型在训练和外部验证队列中表现出优异的预测性能。最后,针对这些亚型的 10 基因分类模型确定 TTK 是一个很有前途的治疗靶点,具有强大的分类能力。这项全面的研究为 HCC 分层提供了新的视角,为深入了解其发病机制和开发有前途的治疗策略提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6451/11230636/3da36a5aeccf/pcbi.1012113.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验