Suppr超能文献

具有快速传播的可推广、快速且准确的深度定量构效关系模型。

Generalizable, fast, and accurate DeepQSPR with fastprop.

作者信息

Burns Jackson W, Green William H

机构信息

Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

J Cheminform. 2025 May 13;17(1):73. doi: 10.1186/s13321-025-01013-4.

Abstract

Quantitative Structure-Property Relationship studies (QSPR), often referred to interchangeably as QSAR, seek to establish a mapping between molecular structure and an arbitrary target property. Historically this was done on a target-by-target basis with new descriptors being devised to specifically map to a given target. Today software packages exist that calculate thousands of these descriptors, enabling general modeling typically with classical and machine learning methods. Also present today are learned representation methods in which deep learning models generate a target-specific representation during training. The former requires less training data and offers improved speed and interpretability while the latter offers excellent generality, while the intersection of the two remains under-explored. This paper introduces fastprop, a software package and general Deep-QSPR framework that combines a cogent set of molecular descriptors with deep learning to achieve state-of-the-art performance on datasets ranging from tens to tens of thousands of molecules. fastprop provides both a user-friendly Command Line Interface and highly interoperable set of Python modules for the training and deployment of feedforward neural networks for property prediction. This approach yields improvements in speed and interpretability over existing methods while statistically equaling or exceeding their performance across most of the tested benchmarks. fastprop is designed with Research Software Engineering best practices and is free and open source, hosted at github.com/jacksonburns/fastprop.

摘要

定量结构-性质关系研究(QSPR,通常与QSAR互换使用)旨在建立分子结构与任意目标性质之间的映射关系。从历史上看,这是在逐个目标的基础上进行的,需要设计新的描述符来专门映射到给定目标。如今,存在一些软件包,可以计算数千个这样的描述符,从而通常能够使用经典方法和机器学习方法进行通用建模。如今还出现了学习表示方法,其中深度学习模型在训练期间生成特定于目标的表示。前者需要较少的训练数据,并提供更高的速度和可解释性,而后者具有出色的通用性,而两者的交叉点仍有待深入探索。本文介绍了fastprop,这是一个软件包和通用的深度QSPR框架,它将一组有说服力的分子描述符与深度学习相结合,在从数十到数万个分子的数据集上实现了一流的性能。fastprop为前馈神经网络的训练和部署提供了用户友好的命令行界面和高度可互操作的Python模块集,用于属性预测。这种方法在速度和可解释性方面比现有方法有所改进,同时在大多数测试基准上在统计上等于或超过它们的性能。fastprop是按照研究软件工程的最佳实践设计的,并且是免费和开源的,托管在github.com/jacksonburns/fastprop上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22e8/12076996/659da3bd1caa/13321_2025_1013_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验