Tetko Igor V, Clevert Djork-Arné
Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich - Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 86764, Neuherberg, Germany.
BIGCHEM GmbH, Valerystr. 49, 85716, Unterschleißheim, Germany.
J Cheminform. 2025 Aug 8;17(1):122. doi: 10.1186/s13321-025-01061-w.
This editorial presents an analysis of the articles published in the Journal of Cheminformatics Special Issue "AI in Drug Discovery". We review how novel machine learning developments are enhancing structural-based drug discovery; providing better forecasts of molecular properties while also improving various elements of chemical reaction prediction. Methodological developments focused on increasing the accuracy of models via pre-training, estimating the accuracy of predictions, tuning model hyperparameters while avoiding overfitting, in addition to a diverse range of other novel and interesting methodological aspects, including the incorporation of human expert knowledge to analysing the susceptibility of models to adversary attacks, were explored in this Special Issue. In summary, the Special Issue brought together an excellent collection of articles that collectively demonstrate how machine learning methods have become an essential asset in modern drug discovery, with the potential to advance autonomous chemistry labs in the near future.
这篇社论对发表在《化学信息学杂志》“药物发现中的人工智能”特刊上的文章进行了分析。我们回顾了新颖的机器学习进展如何加强基于结构的药物发现;在提供更好的分子性质预测的同时,还改善化学反应预测的各个方面。本特刊探讨了一系列方法学进展,包括通过预训练提高模型准确性、估计预测准确性、调整模型超参数以避免过拟合,以及其他各种新颖有趣的方法学方面,包括纳入人类专家知识来分析模型对对抗性攻击的敏感性。总之,该特刊汇集了一批优秀的文章,共同展示了机器学习方法如何成为现代药物发现中不可或缺的资产,并有可能在不久的将来推动自主化学实验室的发展。