Luo Luyang, Wang Xi, Lin Yi, Ma Xiaoqi, Tan Andong, Chan Ronald, Vardhanabhuti Varut, Chu Winnie Cw, Cheng Kwang-Ting, Chen Hao
IEEE Rev Biomed Eng. 2025;18:130-151. doi: 10.1109/RBME.2024.3357877. Epub 2025 Jan 28.
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
自2020年以来,乳腺癌已成为全球所有恶性肿瘤中发病率最高的疾病。乳腺成像在乳腺癌患者的早期诊断和干预中发挥着重要作用,以改善其治疗效果。在过去十年中,深度学习在乳腺癌成像分析方面取得了显著进展,在解读乳腺成像模态的丰富信息和复杂背景方面具有巨大潜力。考虑到深度学习技术的快速发展以及乳腺癌日益严峻的形势,总结过去的进展并确定未来需要解决的挑战至关重要。本文对基于深度学习的乳腺癌成像研究进行了广泛综述,涵盖了过去十年中有关乳房X光片、超声、磁共振成像和数字病理图像的研究。详细阐述并讨论了基于成像的筛查、诊断、治疗反应预测和预后的主要深度学习方法及应用。基于本次调查结果,我们对基于深度学习的乳腺癌成像未来研究的挑战和潜在途径进行了全面讨论。