Suppr超能文献

来自[具体来源]的糖苷水解酶FsGH28c与PnPUB35之间的相互作用赋予了[具体对象]抗性。

Interaction Between Glycoside Hydrolase FsGH28c from and PnPUB35 Confers Resistance in .

作者信息

Liu Shichao, Xing Tianci, Liu Ruibing, Gao Shengfeng, Yang Jianfeng, Tian Tian, Zhang Chong, Sun Shiwei, Zhao Chenchen

机构信息

Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.

Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning 571533, China.

出版信息

Int J Mol Sci. 2025 Apr 28;26(9):4189. doi: 10.3390/ijms26094189.

Abstract

Pathogens deploy various molecular mechanisms to overcome host defenses, among which glycoside hydrolases (GHs) play a critical role as virulence factors. Understanding the functional roles of these enzymes is essential for uncovering pathogen-host interactions and developing strategies for disease management. wilt has occurred in the main cultivation regions, which seriously affects the yield and quality of . Here, we identified and characterized FsGH28c, a GH28 family member in . Its expression was significantly upregulated during the infection of black pepper (Piper nigrum) roots by cv. WN-1, indicating its potential role in pathogenicity. elicited cell death in and modulated the expression of genes related to pathogenesis. exerts a positive influence on the pathogenicity of . The knockout of mutant strains markedly attenuated 's virulence in black pepper plants. The knockout mutant strains decrease the ability of to utilize carbon sources. The deletion did not affect mycelial growth on PDA but did impact spore development. We identified a U-box protein, PnPUB35, interacting with FsGH28c using yeast two-hybrid and bimolecular fluorescence complementation assays. PnPUB35 conferred enhanced resistance to in black pepper through positive regulation. These findings suggest that FsGH28c may function as a virulence factor by modulating host immune responses through its interaction with PnPUB35.

摘要

病原体利用各种分子机制来克服宿主防御,其中糖苷水解酶(GHs)作为毒力因子发挥着关键作用。了解这些酶的功能作用对于揭示病原体与宿主的相互作用以及制定疾病管理策略至关重要。主要种植区已发生枯萎病,严重影响了[作物名称]的产量和质量。在此,我们鉴定并表征了FsGH28c,它是[病原菌名称]中GH28家族的一个成员。在尖孢镰刀菌(Fusarium oxysporum)cv. WN - 1感染黑胡椒(Piper nigrum)根的过程中,其表达显著上调,表明其在致病性方面具有潜在作用。[病原菌名称]在[植物名称]中引发细胞死亡并调节与发病机制相关的基因表达。[病原菌名称]对[病原菌名称]的致病性产生积极影响。[病原菌名称]突变菌株的敲除显著减弱了其在黑胡椒植物中的毒力。敲除突变菌株降低了[病原菌名称]利用碳源的能力。[基因名称]的缺失不影响在PDA上的菌丝生长,但确实影响孢子发育。我们通过酵母双杂交和双分子荧光互补试验鉴定了一种与FsGH28c相互作用的U - box蛋白PnPUB35。PnPUB35通过正向调节赋予黑胡椒对[病原菌名称]更强的抗性。这些发现表明,FsGH28c可能通过与PnPUB35相互作用调节宿主免疫反应而作为一种毒力因子发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/060d/12071851/caf3ad59e2ae/ijms-26-04189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验