Zvyagina Julia Yu, Safiullin Robert R, Boginskaya Irina A, Slipchenko Ekaterina A, Afanas'ev Konstantin N, Sedova Marina V, Krylov Vadim B, Yashunsky Dmitry V, Argunov Dmitry A, Nifantiev Nikolay E, Ryzhikov Ilya A, Merzlikin Alexander M, Lagarkov Andrey N
Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia.
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia.
Int J Mol Sci. 2025 Apr 29;26(9):4218. doi: 10.3390/ijms26094218.
Specific monosaccharide residue, β-D-galactofuranose (Galf) featuring a five-membered ring structure, is found in the glycans of fungi and bacteria, but is normally absent in healthy mammals and humans. In this study, synthetic oligosaccharides mimicking bacterial and fungal glycans were investigated by SERS (Surface-Enhanced Raman Scattering) techniques for the first time to distinguish between different types of glycan chains. SERS spectra of oligosaccharides related to fungal α-(1→2)-mannan, β-(1→3)-glucan, β-(1→6)-glucan, galactomannan of , galactan I of , and diheteroglycan of were measured. To analyze the spectra, a number of machine learning methods were used that complemented each other: principal component analysis (PCA), confidence interval estimation (CIE), and logistic regression with L1 regularization. Each of the methods has shown own effectiveness in analyzing spectra. Namely, PCA allows the visualization of the divergence of spectra in the principal component space, CIE visualizes the degree of overlap of spectra through confidence interval analysis, and logistic regression allows researchers to build a model for determining the belonging of the analyte to a given class of carbohydrate structures. Additionally, the methods complement each other, allowing the determination of important features representing the main differences in the spectra containing and not containing Galf residue. The developed mathematical models enabled the reliable identification of Galf residues within glycan compositions. Given the high sensitivity of SERS, this spectroscopic technique serves as a promising basis for developing diagnostic test systems aimed at detecting biomarkers of fungal and bacterial infections.
特定的单糖残基β-D-呋喃半乳糖(Galf)具有五元环结构,存在于真菌和细菌的聚糖中,但在健康的哺乳动物和人类中通常不存在。在本研究中,首次通过表面增强拉曼散射(SERS)技术研究了模拟细菌和真菌聚糖的合成寡糖,以区分不同类型的聚糖链。测量了与真菌α-(1→2)-甘露聚糖、β-(1→3)-葡聚糖、β-(1→6)-葡聚糖、[具体名称缺失]的半乳甘露聚糖、[具体名称缺失]的半乳聚糖I以及[具体名称缺失]的二杂聚糖相关的寡糖的SERS光谱。为了分析光谱,使用了多种相互补充的机器学习方法:主成分分析(PCA)、置信区间估计(CIE)以及L1正则化的逻辑回归。每种方法在分析光谱时都显示出了自身的有效性。具体而言,PCA允许在主成分空间中可视化光谱的差异,CIE通过置信区间分析可视化光谱的重叠程度,而逻辑回归使研究人员能够建立一个模型来确定分析物属于给定碳水化合物结构类别的归属。此外,这些方法相互补充,能够确定代表含有和不含有Galf残基的光谱主要差异的重要特征。所开发的数学模型能够可靠地识别聚糖组成中的Galf残基。鉴于SERS的高灵敏度,这种光谱技术为开发旨在检测真菌和细菌感染生物标志物的诊断测试系统提供了一个有前景的基础。