Paz de la Vega Amaya, Liendo Fabiana, Pichún Bryan, Penagos Johisner, Segura Rodrigo, Aguirre María Jesús
Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile.
Millennium Institute on Green Ammonia as Energy Vector-MIGA (ICN2021_023), Santiago 7820436, Chile.
Int J Mol Sci. 2025 Apr 30;26(9):4267. doi: 10.3390/ijms26094267.
Designing a highly sensitive and efficient functionalized electrode for precise drug analysis remains a significant challenge. In this work, an electrochemical sensor based on a glassy carbon electrode (GCE) modified with phenyl diazonium salts (ph) and electrochemically reduced graphene oxide (ERGO), labeled GCE/ph/ERGO, was developed for the detection of paracetamol (PAR) in pharmaceutical matrices using square wave voltammetry (SWV). The modified electrode was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Compared to the bare GCE, the GCE/ph/ERGO sensor demonstrated significantly improved conductivity and anodic current peak for PAR over two orders of magnitude higher, indicating a substantial enhancement in electrochemical performance. Under optimized conditions, the developed sensor exhibited a low detection limit of 18.2 nM and a quantification limit of 60.6 nM. Precision studies yielded relative standard deviations (RSDs) below 8%. The sensor demonstrated excellent selectivity in the presence of common pharmaceutical excipients and high accuracy in the analysis of generic pharmaceutical formulations, with results comparable to those obtained by the HPLC technique. These findings confirm the sensor's reliability, stability, robustness, and suitability for routine analysis of PAR in pharmaceutical samples.
设计一种用于精确药物分析的高灵敏度和高效功能化电极仍然是一项重大挑战。在这项工作中,开发了一种基于用苯基重氮盐(ph)和电化学还原氧化石墨烯(ERGO)修饰的玻碳电极(GCE)的电化学传感器,标记为GCE/ph/ERGO,用于使用方波伏安法(SWV)检测药物基质中的对乙酰氨基酚(PAR)。通过扫描电子显微镜(SEM)、电化学阻抗谱(EIS)和循环伏安法(CV)对修饰电极进行了表征。与裸GCE相比,GCE/ph/ERGO传感器的导电性显著提高,PAR的阳极电流峰值高出两个数量级以上,表明电化学性能有了大幅提升。在优化条件下,所开发的传感器的检测限低至18.2 nM,定量限为60.6 nM。精密度研究得出相对标准偏差(RSD)低于8%。该传感器在常见药物赋形剂存在下表现出优异的选择性,在分析仿制药制剂时具有很高的准确性,其结果与通过HPLC技术获得的结果相当。这些发现证实了该传感器在药物样品中PAR常规分析的可靠性、稳定性、稳健性和适用性。