文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用大语言模型改进个性化饮食计划:识别与分解复合食材

Improving Personalized Meal Planning with Large Language Models: Identifying and Decomposing Compound Ingredients.

作者信息

Kopitar Leon, Bedrač Leon, Strath Larissa J, Bian Jiang, Stiglic Gregor

机构信息

Faculty of Health Sciences, University of Maribor, 2000 Maribor, Slovenia.

Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia.

出版信息

Nutrients. 2025 Apr 29;17(9):1492. doi: 10.3390/nu17091492.


DOI:10.3390/nu17091492
PMID:40362801
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12073434/
Abstract

BACKGROUND/OBJECTIVES: Identifying and decomposing compound ingredients within meal plans presents meal customization and nutritional analysis challenges. It is essential for accurately identifying and replacing problematic ingredients linked to allergies or intolerances and helping nutritional evaluation. METHODS: This study explored the effectiveness of three large language models (LLMs)-GPT-4o, Llama-3 (70B), and Mixtral (8x7B), in decomposing compound ingredients into basic ingredients within meal plans. GPT-4o was used to generate 15 structured meal plans, each containing compound ingredients. Each LLM then identified and decomposed these compound items into basic ingredients. The decomposed ingredients were matched to entries in a subset of the USDA FoodData Central repository using API-based search and mapping techniques. Nutritional values were retrieved and aggregated to evaluate accuracy of decomposition. Performance was assessed through manual review by nutritionists and quantified using accuracy and F1-score. Statistical significance was tested using paired -tests or Wilcoxon signed-rank tests based on normality. RESULTS: Results showed that large models-both Llama-3 (70B) and GPT-4o-outperformed Mixtral (8x7B), achieving average F1-scores of 0.894 (95% CI: 0.84-0.95) and 0.842 (95% CI: 0.79-0.89), respectively, compared to an F1-score of 0.690 (95% CI: 0.62-0.76) from Mixtral (8x7B). CONCLUSIONS: The open-source Llama-3 (70B) model achieved the best performance, outperforming the commercial GPT-4o model, showing its superior ability to consistently break down compound ingredients into precise quantities within meal plans and illustrating its potential to enhance meal customization and nutritional analysis. These findings underscore the potential role of advanced LLMs in precision nutrition and their application in promoting healthier dietary practices tailored to individual preferences and needs.

摘要

背景/目的:识别和分解饮食计划中的复合成分给饮食定制和营养分析带来了挑战。准确识别和替换与过敏或不耐受相关的有问题成分并辅助营养评估至关重要。 方法:本研究探讨了三种大语言模型(LLMs)——GPT-4o、Llama-3(70B)和Mixtral(8x7B)在将饮食计划中的复合成分分解为基本成分方面的有效性。使用GPT-4o生成15个结构化饮食计划,每个计划都包含复合成分。然后,每个大语言模型将这些复合项目识别并分解为基本成分。使用基于应用程序编程接口(API)的搜索和映射技术,将分解后的成分与美国农业部食品数据中心存储库子集中的条目进行匹配。检索并汇总营养价值以评估分解的准确性。通过营养师的人工审核评估性能,并使用准确率和F1分数进行量化。根据数据的正态性,使用配对t检验或Wilcoxon符号秩检验来检验统计显著性。 结果:结果表明,大型模型——Llama-3(70B)和GPT-4o——的表现优于Mixtral(8x7B),Llama-3(70B)和GPT-4o的平均F1分数分别为0.894(95%置信区间:0.84 - 0.95)和0.842(95%置信区间:0.79 - 0.89),而Mixtral(8x7B)的F1分数为0.690(95%置信区间:0.62 - 0.76)。 结论:开源的Llama-3(70B)模型表现最佳,优于商业GPT-4o模型,显示出其在饮食计划中始终如一地将复合成分分解为精确数量的卓越能力,并说明了其在增强饮食定制和营养分析方面的潜力。这些发现强调了先进大语言模型在精准营养中的潜在作用及其在促进根据个人偏好和需求定制更健康饮食习惯方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669a/12073434/c10221817ada/nutrients-17-01492-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669a/12073434/9ddf8a08ce9b/nutrients-17-01492-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669a/12073434/c10221817ada/nutrients-17-01492-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669a/12073434/9ddf8a08ce9b/nutrients-17-01492-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669a/12073434/c10221817ada/nutrients-17-01492-g002.jpg

相似文献

[1]
Improving Personalized Meal Planning with Large Language Models: Identifying and Decomposing Compound Ingredients.

Nutrients. 2025-4-29

[2]
Privacy-ensuring Open-weights Large Language Models Are Competitive with Closed-weights GPT-4o in Extracting Chest Radiography Findings from Free-Text Reports.

Radiology. 2025-1

[3]
Evaluating large language model performance to support the diagnosis and management of patients with primary immune disorders.

J Allergy Clin Immunol. 2025-2-14

[4]
Large language models for error detection in radiology reports: a comparative analysis between closed-source and privacy-compliant open-source models.

Eur Radiol. 2025-2-20

[5]
Llama 3.1 405B Is Comparable to GPT-4 for Extraction of Data from Thrombectomy Reports-A Step Towards Secure Data Extraction.

Clin Neuroradiol. 2025-2-25

[6]
Benchmarking open-source large language models on Portuguese Revalida multiple-choice questions.

BMJ Health Care Inform. 2025-2-24

[7]
Using large language models as decision support tools in emergency ophthalmology.

Int J Med Inform. 2025-7

[8]
Comparative evaluation and performance of large language models on expert level critical care questions: a benchmark study.

Crit Care. 2025-2-10

[9]
Cancer Vaccine Adjuvant Name Recognition from Biomedical Literature using Large Language Models.

ArXiv. 2025-2-12

[10]
Extracting Pulmonary Embolism Diagnoses From Radiology Impressions Using GPT-4o: Large Language Model Evaluation Study.

JMIR Med Inform. 2025-4-9

本文引用的文献

[1]
Navigating next-gen nutrition care using artificial intelligence-assisted dietary assessment tools-a scoping review of potential applications.

Front Nutr. 2025-1-23

[2]
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.

J Med Internet Res. 2024-11-28

[3]
Can the AI tools ChatGPT and Bard generate energy, macro- and micro-nutrient sufficient meal plans for different dietary patterns?

Nutr Res. 2024-8

[4]
Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review.

Nutrients. 2024-4-6

[5]
Qualitative evaluation of artificial intelligence-generated weight management diet plans.

Front Nutr. 2024-3-21

[6]
Deep Learning-Based Near-Infrared Hyperspectral Imaging for Food Nutrition Estimation.

Foods. 2023-8-22

[7]
On evaluation metrics for medical applications of artificial intelligence.

Sci Rep. 2022-4-8

[8]
Classification and Prediction on the Effects of Nutritional Intake on Overweight/Obesity, Dyslipidemia, Hypertension and Type 2 Diabetes Mellitus Using Deep Learning Model: 4-7th Korea National Health and Nutrition Examination Survey.

Int J Environ Res Public Health. 2021-5-24

[9]
goFOOD: An Artificial Intelligence System for Dietary Assessment.

Sensors (Basel). 2020-7-31

[10]
Applying the Concept of Nutrient-Profiling to Promote Healthy Eating and Raise Individuals' Awareness of the Nutritional Quality of their Food.

AMIA Annu Symp Proc. 2018-4-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索