文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

goFOOD:一个用于膳食评估的人工智能系统。

goFOOD: An Artificial Intelligence System for Dietary Assessment.

机构信息

ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland.

Division of Endocrinology, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA.

出版信息

Sensors (Basel). 2020 Jul 31;20(15):4283. doi: 10.3390/s20154283.


DOI:10.3390/s20154283
PMID:32752007
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7436102/
Abstract

Accurate estimation of nutritional information may lead to healthier diets and better clinical outcomes. We propose a dietary assessment system based on artificial intelligence (AI), named goFOOD. The system can estimate the calorie and macronutrient content of a meal, on the sole basis of food images captured by a smartphone. goFOOD requires an input of two meal images or a short video. For conventional single-camera smartphones, the images must be captured from two different viewing angles; smartphones equipped with two rear cameras require only a single press of the shutter button. The deep neural networks are used to process the two images and implements food detection, segmentation and recognition, while a 3D reconstruction algorithm estimates the food's volume. Each meal's calorie and macronutrient content is calculated from the food category, volume and the nutrient database. goFOOD supports 319 fine-grained food categories, and has been validated on two multimedia databases that contain non-standardized and fast food meals. The experimental results demonstrate that goFOOD performed better than experienced dietitians on the non-standardized meal database, and was comparable to them on the fast food database. goFOOD provides a simple and efficient solution to the end-user for dietary assessment.

摘要

准确估计营养信息可能会导致更健康的饮食和更好的临床结果。我们提出了一种基于人工智能(AI)的饮食评估系统,名为 goFOOD。该系统可以仅根据智能手机拍摄的食物图像来估计膳食的卡路里和宏量营养素含量。goFOOD 需要输入两张膳食图像或短视频。对于传统的单摄像头智能手机,图像必须从两个不同的视角拍摄;配备两个后置摄像头的智能手机只需按下快门按钮一次。深度神经网络用于处理两张图像,并执行食物检测、分割和识别,而 3D 重建算法则估算食物的体积。根据食物类别、体积和营养数据库计算每顿饭的卡路里和宏量营养素含量。goFOOD 支持 319 个精细的食物类别,并已在包含非标准化和快餐的两个多媒体数据库上进行了验证。实验结果表明,goFOOD 在非标准化膳食数据库上的表现优于经验丰富的营养师,而在快餐数据库上的表现与营养师相当。goFOOD 为最终用户提供了一种简单高效的饮食评估解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/9a1af853115d/sensors-20-04283-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/cff5bd10b60a/sensors-20-04283-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/199f953bcdc6/sensors-20-04283-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/bd8874e5533a/sensors-20-04283-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/4bfb0db5054b/sensors-20-04283-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/47c7b1de690b/sensors-20-04283-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/c08f8d17d810/sensors-20-04283-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/81f44225e6f3/sensors-20-04283-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/9a1af853115d/sensors-20-04283-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/cff5bd10b60a/sensors-20-04283-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/199f953bcdc6/sensors-20-04283-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/bd8874e5533a/sensors-20-04283-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/4bfb0db5054b/sensors-20-04283-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/47c7b1de690b/sensors-20-04283-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/c08f8d17d810/sensors-20-04283-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/81f44225e6f3/sensors-20-04283-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83c4/7436102/9a1af853115d/sensors-20-04283-g008.jpg

相似文献

[1]
goFOOD: An Artificial Intelligence System for Dietary Assessment.

Sensors (Basel). 2020-7-31

[2]
The Nutritional Content of Meal Images in Free-Living Conditions-Automatic Assessment with goFOOD.

Nutrients. 2023-9-2

[3]
The Human Factor in Automated Image-Based Nutrition Apps: Analysis of Common Mistakes Using the goFOOD Lite App.

JMIR Mhealth Uhealth. 2021-1-13

[4]
Volumetric Food Quantification Using Computer Vision on a Depth-Sensing Smartphone: Preclinical Study.

JMIR Mhealth Uhealth. 2020-3-25

[5]
An Artificial Intelligence-Based System for Nutrient Intake Assessment of Hospitalised Patients.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[6]
AI-based digital image dietary assessment methods compared to humans and ground truth: a systematic review.

Ann Med. 2023

[7]
Evaluation of a Novel Artificial Intelligence System to Monitor and Assess Energy and Macronutrient Intake in Hospitalised Older Patients.

Nutrients. 2021-12-17

[8]
A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems.

IEEE Rev Biomed Eng. 2024

[9]
Validity and Usability of a Smartphone Image-Based Dietary Assessment App Compared to 3-Day Food Diaries in Assessing Dietary Intake Among Canadian Adults: Randomized Controlled Trial.

JMIR Mhealth Uhealth. 2020-9-9

[10]
A Cross-Sectional Reproducibility Study of a Standard Camera Sensor Using Artificial Intelligence to Assess Food Items: The FoodIntech Project.

Nutrients. 2022-1-5

引用本文的文献

[1]
Improving Personalized Meal Planning with Large Language Models: Identifying and Decomposing Compound Ingredients.

Nutrients. 2025-4-29

[2]
Image-based food monitoring and dietary management for patients living with diabetes: a scoping review of calorie counting applications.

Front Nutr. 2025-3-27

[3]
An Evaluation of ChatGPT for Nutrient Content Estimation from Meal Photographs.

Nutrients. 2025-2-7

[4]
Investigation and Assessment of AI's Role in Nutrition-An Updated Narrative Review of the Evidence.

Nutrients. 2025-1-5

[5]
Innovative food supply chain through spatial computing technologies: A review.

Compr Rev Food Sci Food Saf. 2024-11

[6]
Advancements in Using AI for Dietary Assessment Based on Food Images: Scoping Review.

J Med Internet Res. 2024-11-15

[7]
Health Locus of Control and Medical Behavioral Interventions: Systematic Review and Recommendations.

Interact J Med Res. 2024-10-10

[8]
Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review.

Nutrients. 2024-4-6

[9]
The Use of Three-Dimensional Images and Food Descriptions from a Smartphone Device Is Feasible and Accurate for Dietary Assessment.

Nutrients. 2024-3-14

[10]
mid-DeepLabv3+: A Novel Approach for Image Semantic Segmentation Applied to African Food Dietary Assessments.

Sensors (Basel). 2023-12-29

本文引用的文献

[1]
10. Cardiovascular Disease and Risk Management: .

Diabetes Care. 2020-1

[2]
Multi-Scale Multi-View Deep Feature Aggregation for Food Recognition.

IEEE Trans Image Process. 2019-7-29

[3]
A Comparative Study on Carbohydrate Estimation: GoCARB vs. Dietitians.

Nutrients. 2018-6-7

[4]
Economic Costs of Diabetes in the U.S. in 2017.

Diabetes Care. 2018-3-22

[5]
Deep Learning for Computer Vision: A Brief Review.

Comput Intell Neurosci. 2018-2-1

[6]
Food Recognition: A New Dataset, Experiments, and Results.

IEEE J Biomed Health Inform. 2016-12-7

[7]
Carbohydrate Estimation Supported by the GoCARB System in Individuals With Type 1 Diabetes: A Randomized Prospective Pilot Study.

Diabetes Care. 2017-2

[8]
Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study.

J Med Internet Res. 2016-5-11

[9]
Computer vision-based carbohydrate estimation for type 1 patients with diabetes using smartphones.

J Diabetes Sci Technol. 2015-5

[10]
A food recognition system for diabetic patients based on an optimized bag-of-features model.

IEEE J Biomed Health Inform. 2014-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索