Makarova Liudmila A, Musaev Michail T, Kalandiia Margarita R, Kostrov Sergey A, Kramarenko Elena Yu, Salnikov Vitalii D, Gavrilov Damir E, Omelyanchik Aleksander S, Rodionova Valeria V, Perov Nikolai S
Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS), 119334 Moscow, Russia.
Polymers (Basel). 2025 Apr 26;17(9):1183. doi: 10.3390/polym17091183.
Two-layered structures consisting of piezopolymer and magnetic elastomer were investigated as magnetoelectric material. Three types of magnetic elastomer based on cobalt ferrite (CoFeO) and Ni- or Zn-substituted CoFeO nanoparticles were used as magnetically sensitive layers. Cobalt ferrite nanoparticles are considered one of the most promising metal-oxide nanomaterials because of their favorable magnetic properties, such as high saturation magnetization and magnetic anisotropy. The substitution of Co in cobalt ferrite with other transition metals allows for additional tailoring of these properties. The modified magnetic behavior of the substituted CoFeO nanoparticles directly influenced the magnetic properties of magnetic elastomers and, consequently, the magnetoelectric response of composite structures. In this case, the resonant frequency of the magnetoelectric effect remained largely independent of the type of magnetic nanoparticles in the magnetic elastomer layer but its magnitude increased upon Zn substitution up to ~107 mV·cm·Oe. These findings highlight the potential of chemically engineered magnetic properties of CoFeO nanoparticles for manufacturing magnetoelectric composites to expand their applications in energy harvesting and sensors.
研究了由压电聚合物和磁性弹性体组成的双层结构作为磁电材料。使用了三种基于钴铁氧体(CoFeO)以及镍或锌取代的CoFeO纳米颗粒的磁性弹性体作为磁敏层。钴铁氧体纳米颗粒因其良好的磁性能,如高饱和磁化强度和磁各向异性,被认为是最有前途的金属氧化物纳米材料之一。用其他过渡金属取代钴铁氧体中的钴,可以进一步调整这些性能。取代的CoFeO纳米颗粒的改性磁行为直接影响了磁性弹性体的磁性能,进而影响了复合结构的磁电响应。在这种情况下,磁电效应的共振频率在很大程度上与磁性弹性体层中磁性纳米颗粒的类型无关,但其幅度在锌取代后增加到约107 mV·cm·Oe。这些发现突出了通过化学工程设计CoFeO纳米颗粒的磁性来制造磁电复合材料以扩大其在能量收集和传感器中的应用的潜力。