†Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
‡International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
ACS Appl Mater Interfaces. 2015 Jul 15;7(27):15017-22. doi: 10.1021/acsami.5b04102. Epub 2015 Jul 7.
The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials; however, their ME switching is often accompanied by significant hysteresis and coercivity that represents for some applications a severe weakness. To overcome this obstacle, this work focuses on the development of a new type of ME polymer nanocomposites that exhibits a tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric copolymer poly(vinylindene fluoride-trifluoroethylene) (P(VDF-TrFE)) matrix. No substantial differences were detected in the time-stable piezoelectric response of the composites (∼-28 pC·N(1-)) with distinct ferrite fillers and for the same ferrite content of 10 wt %. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10 wt % ferrite content revealed that the ME induced voltage increases with increasing dc magnetic field until a maximum of 6.5 mV·cm(-1)·Oe(1-), at an optimum magnetic field of 0.26 T, and 0.8 mV·cm(-1)·Oe(1-), at an optimum magnetic field of 0.15 T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. In contrast, the ME response of ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, and ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.
在磁电(ME)材料上已经实现了通过施加磁场来操纵电序;然而,它们的 ME 转换通常伴随着显著的滞后和矫顽力,这对于某些应用来说是一个严重的弱点。为了克服这一障碍,本工作专注于开发一种新型的 ME 聚合物纳米复合材料,该复合材料在室温下表现出定制的 ME 响应。多铁纳米复合材料基于三种不同的铁氧体纳米粒子,Zn0.2Mn0.8Fe2O4(ZMFO)、CoFe2O4(CFO)和 Fe3O4(FO),分散在压电共聚体聚(偏二氟乙烯-三氟乙烯)(P(VDF-TrFE))基质中。在所研究的复合材料(约-28 pC·N(1-))中,没有检测到具有不同铁氧体填充剂的时间稳定的压电响应以及相同的 10 wt%铁氧体含量之间有实质性的差异。纯铁氧体纳米粉末的磁滞回线显示出不同的磁响应。具有 10 wt%铁氧体含量的纳米复合材料薄膜的 ME 结果表明,ME 感应电压随着直流磁场的增加而增加,直到在 0.26 T 的最佳磁场下达到 6.5 mV·cm(-1)·Oe(1-)的最大值,并且在 0.15 T 的最佳磁场下达到 0.8 mV·cm(-1)·Oe(1-),对于 CFO/P(VDF-TrFE)和 FO/P(VDF-TrFE)复合材料,分别。相比之下,ZMFO/P(VDF-TrFE)的 ME 响应没有滞后,并且高度依赖于 ZMFO 填充剂的含量。已经针对这种铁氧体/PVDF 纳米复合材料提出了可能的创新应用,例如存储器和信息存储、信号处理以及 ME 传感器和振荡器。