Suppr超能文献

使用有限数量传感器优化光学泵磁力计(OPM)-脑磁图(MEG)布局

Optimization of OPM-MEG Layouts with a Limited Number of Sensors.

作者信息

Marhl Urban, Hren Rok, Sander Tilmann, Jazbinšek Vojko

机构信息

Institute of Mathematics, Physics and Mechanics, SI-1000 Ljubljana, Slovenia.

Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia.

出版信息

Sensors (Basel). 2025 Apr 24;25(9):2706. doi: 10.3390/s25092706.

Abstract

Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that measures weak magnetic fields generated by neural electrical activity in the brain. Traditional MEG systems use superconducting quantum interference device (SQUID) sensors, which require cryogenic cooling and employ a dense array of sensors to capture magnetic field maps (MFMs) around the head. Recent advancements have introduced optically pumped magnetometers (OPMs) as a promising alternative. Unlike SQUIDs, OPMs do not require cooling and can be placed closer to regions of interest (ROIs). This study aims to optimize the layout of OPM-MEG sensors, maximizing information capture with a limited number of sensors. We applied a sequential selection algorithm (SSA), originally developed for body surface potential mapping in electrocardiography, which requires a large database of full-head MFMs. While modern OPM-MEG systems offer full-head coverage, expected future clinical use will benefit from simplified procedures, where handling a lower number of sensors is easier and more efficient. To explore this, we converted full-head SQUID-MEG measurements of auditory-evoked fields (AEFs) into OPM-MEG layouts with 80 sensor sites. System conversion was done by calculating a current distribution on the brain surface using minimum norm estimation (MNE). We evaluated the SSA's performance under different protocols, for example, using measurements of single or combined OPM components. We assessed the quality of estimated MFMs using metrics, such as the correlation coefficient (CC), root-mean-square error, and relative error. Additionally, we performed source localization for the highest auditory response (M100) by fitting equivalent current dipoles. Our results show that the first 15 to 20 optimally selected sensors (CC > 0.95, localization error < 1 mm) capture most of the information contained in full-head MFMs. Our main finding is that for event-related fields, such as AEFs, which primarily originate from focal sources, a significantly smaller number of sensors than currently used in conventional MEG systems is sufficient to extract relevant information.

摘要

脑磁图(MEG)是一种非侵入性神经成像技术,用于测量大脑中神经电活动产生的微弱磁场。传统的MEG系统使用超导量子干涉装置(SQUID)传感器,这种传感器需要低温冷却,并采用密集的传感器阵列来捕捉头部周围的磁场图(MFM)。最近的进展引入了光泵磁力计(OPM)作为一种有前途的替代方案。与SQUID不同,OPM不需要冷却,可以放置在更靠近感兴趣区域(ROI)的位置。本研究旨在优化OPM-MEG传感器的布局,以在有限数量的传感器下最大化信息捕获。我们应用了一种顺序选择算法(SSA),该算法最初是为心电图中的体表电位映射而开发的,这需要一个包含全头MFM的大型数据库。虽然现代OPM-MEG系统提供全头覆盖,但预期未来的临床应用将受益于简化程序,即处理较少数量的传感器更容易且更高效。为了探索这一点,我们将听觉诱发电场(AEF)的全头SQUID-MEG测量结果转换为具有80个传感器位置的OPM-MEG布局。系统转换是通过使用最小范数估计(MNE)计算大脑表面的电流分布来完成的。我们评估了SSA在不同协议下的性能,例如,使用单个或组合OPM组件的测量结果。我们使用相关系数(CC)、均方根误差和相对误差等指标评估估计的MFM的质量。此外,我们通过拟合等效电流偶极子对最高听觉反应(M100)进行源定位。我们的结果表明,最初最优选择的15到20个传感器(CC>0.95,定位误差<1毫米)捕获了全头MFM中包含的大部分信息。我们的主要发现是,对于主要源自局灶性源的事件相关场,如AEF,比传统MEG系统目前使用的传感器数量显著更少就足以提取相关信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验