Wang Jiazhan, Zhang Ruifeng, Li Qiang
School of Microelectronics, Tianjin University, Tianjin 300072, China.
Sensors (Basel). 2025 Apr 30;25(9):2845. doi: 10.3390/s25092845.
With the widespread application of machine learning techniques in time series analysis, the interpretability of models trained on time series data has attracted increasing attention. Most existing explanation methods are based on time-domain features, making it difficult to reveal how complex models focus on time-frequency information. To address this, this paper proposes a time-frequency domain-based time series interpretation method aimed at enhancing the interpretability of models at the time-frequency domain. This method extends the traditional LIME algorithm by combining the ideas of short-time Fourier transform (STFT), inverse STFT, and local interpretable model-agnostic explanations (LIME), and introduces a self-designed TFHS (time-frequency homogeneous segmentation) algorithm. The TFHS algorithm achieves precise homogeneous segmentation of the time-frequency matrix through peak detection and clustering analysis, incorporating the distribution characteristics of signals in both frequency and time dimensions. The experiment verified the effectiveness of the TFHS algorithm on Synthetic Dataset 1 and the effectiveness of the TF-LIME algorithm on Synthetic Dataset 2, and then further evaluated the interpretability performance on the MIT-BIH dataset. The results demonstrate that the proposed method significantly improves the interpretability of time-series models in the time-frequency domain, exhibiting strong generalization capabilities and promising application prospects.
随着机器学习技术在时间序列分析中的广泛应用,基于时间序列数据训练的模型的可解释性受到了越来越多的关注。现有的大多数解释方法基于时域特征,难以揭示复杂模型如何关注时频信息。为了解决这个问题,本文提出了一种基于时频域的时间序列解释方法,旨在增强模型在时频域的可解释性。该方法通过结合短时傅里叶变换(STFT)、逆STFT和局部可解释模型无关解释(LIME)的思想扩展了传统的LIME算法,并引入了自行设计的TFHS(时频均匀分割)算法。TFHS算法通过峰值检测和聚类分析实现了时频矩阵的精确均匀分割,融合了信号在频率和时间维度上的分布特征。实验验证了TFHS算法在合成数据集1上的有效性以及TF-LIME算法在合成数据集2上的有效性,然后进一步评估了在MIT-BIH数据集上的可解释性性能。结果表明,所提出的方法显著提高了时间序列模型在时频域的可解释性,具有很强的泛化能力和广阔的应用前景。