Suppr超能文献

基于机器学习的桩基础多点振动采集智能测试方法

Intelligent Testing Method for Multi-Point Vibration Acquisition of Pile Foundation Based on Machine Learning.

作者信息

Wang Ke, Zhao Weikai, Wu Juntao, Ma Shuang

机构信息

College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.

School of Spatial Planning and Design, Hangzhou City University, Hangzhou 310015, China.

出版信息

Sensors (Basel). 2025 May 3;25(9):2893. doi: 10.3390/s25092893.

Abstract

To address the limitations of the conventional low-strain reflected wave method for pile foundation testing, this study proposes an intelligent multi-point vibration acquisition testing model based on machine learning to evaluate the integrity of in-service, high-cap pile foundations. The model's performance was assessed using statistical error metrics, including the correlation coefficient R, mean absolute error (MAE), and variance accounted for (VAF), with comparative evaluations conducted across different model frameworks. Results show that both the convolutional neural network (CNN) and the long short-term memory neural network (LSTM) consistently achieved high accuracy in identifying the location of the first reflection point in the pile shaft, with R values greater than 0.98, MAE below 0.41 (m), and VAF greater than 98%. These findings demonstrate the model's strong predictive capability, test stability, and practical utility in supporting operator decision-making. Among the evaluated models, CNN is recommended for analyzing the integrity of in-service pile foundation based on the multi-point vibration pickup signals and multi-sensor fusion signal preprocessed by the time series stacking method.

摘要

为解决传统低应变反射波法在桩基检测中的局限性,本研究提出一种基于机器学习的智能多点振动采集测试模型,用于评估在用高承载力桩基的完整性。使用统计误差指标(包括相关系数R、平均绝对误差(MAE)和解释方差(VAF))评估模型性能,并在不同模型框架下进行比较评估。结果表明,卷积神经网络(CNN)和长短期记忆神经网络(LSTM)在识别桩身第一反射点位置方面均始终保持高精度,R值大于0.98,MAE低于0.41米,VAF大于98%。这些发现证明了该模型在支持操作人员决策方面具有强大的预测能力、测试稳定性和实际实用性。在所评估的模型中,建议使用CNN基于通过时间序列叠加方法预处理的多点振动拾振信号和多传感器融合信号来分析在用桩基的完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a1e/12074275/d7c77a1aafa7/sensors-25-02893-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验