Suppr超能文献

一种用于基于时间序列的多传感器桩损伤检测的混合卷积循环神经网络。

A Hybrid Convolutional and Recurrent Neural Network for Multi-Sensor Pile Damage Detection with Time Series.

作者信息

Wu Juntao, El Naggar M Hesham, Wang Kuihua

机构信息

College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.

Geotechnical Research Centre, University of Western Ontario, London, ON N6A 5B9, Canada.

出版信息

Sensors (Basel). 2024 Feb 11;24(4):1190. doi: 10.3390/s24041190.

Abstract

Machine learning (ML) algorithms are increasingly applied to structure health monitoring (SHM) problems. However, their application to pile damage detection (PDD) is hindered by the complexity of the problem. A novel multi-sensor pile damage detection (MSPDD) method is proposed in this paper to extend the application of ML algorithms in the automatic identification of PDD. The time-series signals collected by multiple sensors during the pile integrity test are first processed by the traveling wave decomposition (TWD) theory and are then input into a hybrid one-dimensional (1D) convolutional and recurrent neural network. The hybrid neural network can achieve the automatic multi-task identification of pile damage detection based on the time series of MSPDD results. Finally, the analytical solution-based sample set is utilized to evaluate the performance of the proposed hybrid model. The outputs of the multi-task learning framework can provide a detailed description of the actual pile quality and provide strong support for the classification of pile quality as well.

摘要

机器学习(ML)算法越来越多地应用于结构健康监测(SHM)问题。然而,其在桩基础损伤检测(PDD)中的应用受到该问题复杂性的阻碍。本文提出了一种新颖的多传感器桩基础损伤检测(MSPDD)方法,以扩展ML算法在PDD自动识别中的应用。首先,利用行波分解(TWD)理论对桩完整性测试期间多个传感器采集的时间序列信号进行处理,然后将其输入到混合一维(1D)卷积循环神经网络中。该混合神经网络能够基于MSPDD结果的时间序列实现桩基础损伤检测的自动多任务识别。最后,利用基于解析解的样本集评估所提出混合模型的性能。多任务学习框架的输出可以提供实际桩基础质量的详细描述,也为桩基础质量分类提供有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/390e/10892793/b5321f165ab6/sensors-24-01190-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验