Suppr超能文献

MDEU-Net:基于多头多尺度跨轴的医学图像分割网络

MDEU-Net: Medical Image Segmentation Network Based on Multi-Head Multi-Scale Cross-Axis.

作者信息

Yan Shengxian, Lei Yuyang, Zhang Jing, Gao Xiao, Li Xiang, Wang Penghui, Cao Hui

机构信息

Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shanxi Normal University, Xi'an 710062, China.

出版信息

Sensors (Basel). 2025 May 5;25(9):2917. doi: 10.3390/s25092917.

Abstract

Significant advances have been made in the application of attention mechanisms to medical image segmentation, and these advances are notably driven by the development of the cross-axis attention mechanism. However, challenges remain in handling complex images, particularly in multi-scale feature extraction and fine-detail capture. To address these limitations, this paper presents a novel network architecture, multi-head multi-scale cross-axis attention MDEU-Net, that leverages a multi-head attention mechanism processing input features in parallel. The proposed architecture enables the model to focus on both local and global information while capturing features at various spatial scales. Additionally, a gated attention mechanism facilitates efficient feature fusion by selectively emphasizing key features rather than relying on simple concatenation and improves the model's ability to capture critical details at multiple scales. Furthermore, the incorporation of residual connections further mitigates the gradient vanishing problem by enhancing the model's capacity to capture complex structures and fine details. This approach accelerates computation and enhances processing efficiency, while experimental results demonstrate that the proposed network outperforms traditional architectures in terms of performance.

摘要

在将注意力机制应用于医学图像分割方面已经取得了重大进展,这些进展尤其受到跨轴注意力机制发展的推动。然而,在处理复杂图像时仍然存在挑战,特别是在多尺度特征提取和精细细节捕捉方面。为了解决这些限制,本文提出了一种新颖的网络架构——多头多尺度跨轴注意力MDEU-Net,它利用多头注意力机制并行处理输入特征。所提出的架构使模型能够在捕捉不同空间尺度特征的同时,专注于局部和全局信息。此外,门控注意力机制通过有选择地强调关键特征而不是依赖简单的拼接来促进高效的特征融合,并提高模型在多个尺度上捕捉关键细节的能力。此外,残差连接的引入通过增强模型捕捉复杂结构和精细细节的能力,进一步缓解了梯度消失问题。这种方法加快了计算速度并提高了处理效率,而实验结果表明,所提出的网络在性能方面优于传统架构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a992/12074125/2ed3eff6d190/sensors-25-02917-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验