Suppr超能文献

基于线性加速度和角速率信号的胎儿运动检测机器学习方法的比较分析

Comparative Analysis of Machine Learning Approaches for Fetal Movement Detection with Linear Acceleration and Angular Rate Signals.

作者信息

Spicher Lucy, Bell Carrie, Sienko Kathleen H, Huan Xun

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI 48109, USA.

出版信息

Sensors (Basel). 2025 May 7;25(9):2944. doi: 10.3390/s25092944.

Abstract

Reduced fetal movement (RFM) can indicate that a fetus is at risk, but current monitoring methods provide only a "snapshot in time" of fetal health and require trained clinicians in clinical settings. To improve antenatal care, there is a need for continuous, objective fetal movement monitoring systems. Wearable sensors, like inertial measurement units (IMUs), offer a promising data-driven solution, but distinguishing fetal movements from maternal movements remains challenging. The potential benefits of using linear acceleration and angular rate data for fetal movement detection have not been fully explored. In this study, machine learning models were developed using linear acceleration and angular rate data from twenty-three participants who wore four abdominal IMUs and one chest reference while indicating perceived fetal movements with a handheld button. Random forest (RF), bi-directional long short-term memory (BiLSTM), and convolutional neural network (CNN) models were trained using hand-engineered features, time series data, and time-frequency spectrograms, respectively. The results showed that combining accelerometer and gyroscope data improved detection performance across all models compared to either one alone. CNN consistently outperformed other models but required larger datasets. RF and BiLSTM, while more sensitive to signal noise, offered reasonable performance with smaller datasets and greater interpretability.

摘要

胎动减少(RFM)可能表明胎儿处于危险之中,但目前的监测方法仅能提供胎儿健康状况的“即时快照”,且需要临床环境中有经验的临床医生进行操作。为了改善产前护理,需要持续、客观的胎动监测系统。可穿戴传感器,如惯性测量单元(IMU),提供了一种有前景的数据驱动解决方案,但区分胎儿运动和母体运动仍然具有挑战性。利用线性加速度和角速率数据进行胎儿运动检测的潜在益处尚未得到充分探索。在本研究中,使用来自23名参与者的线性加速度和角速率数据开发了机器学习模型,这些参与者佩戴了四个腹部IMU和一个胸部参考设备,同时通过手持按钮指示感知到的胎儿运动。随机森林(RF)、双向长短期记忆(BiLSTM)和卷积神经网络(CNN)模型分别使用手工设计的特征、时间序列数据和时频频谱图进行训练。结果表明,与单独使用加速度计或陀螺仪数据相比,将两者结合可提高所有模型的检测性能。CNN始终优于其他模型,但需要更大的数据集。RF和BiLSTM虽然对信号噪声更敏感,但在较小数据集下具有合理的性能且具有更高的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ff7/12074447/6da972bc18a5/sensors-25-02944-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验