Suppr超能文献

沉积温度对溅射钽氧化物涂层微观结构和性能的影响。

Influence of Deposition Temperature on Microstructure and Properties of Tantalum Oxide Sputtered Coatings.

作者信息

Nikolova Maria P, Tzvetkov Iliyan

机构信息

Department of Material Science and Technology, University of Ruse "Angel Kanchev", 8 Studentska Str., 7017 Ruse, Bulgaria.

出版信息

Materials (Basel). 2025 Apr 22;18(9):1895. doi: 10.3390/ma18091895.

Abstract

To increase the wear and corrosion resistance of (α + β) titanium-aluminium-vanadium (Ti6Al4V) alloy, ceramic tantalum oxide coatings were deposited by direct current (DC) magnetron sputtering at three different substrate temperatures-400, 450, and 500 °C. The crystallographic structure, surface morphology, chemical compositions, film adhesion, and hardness of the coatings were described using XRD, SEM, EDS, scratch tests, and microhardness measurements. The samples' ability to withstand corrosion was assessed using electrochemical studies. Results revealed that thin films have an amorphous or crystalline structure dependent on temperature. The film's thicknesses varied between 560 and 600 nm. With the increase in deposition temperature, the hardness of the film rose. All oxide coatings were tightly adherent to the titanium alloy substrate, and critical force increased from about 8.6 up to 20 N when the temperature rose from 400 to 500 °C. During the polarisation investigations, after 1 h of immersion, a drop in current density (j) verified an improvement in the corrosion resistance of the amorphous and well-crystalline coatings. A two-layer model of the surface film accurately describes the coated systems' electrochemical behaviour. However, according to the EIS analysis, the well-crystalline film deteriorates greatly, whereas the amorphous film prevents penetration during the 7-day immersion test in SBF. The wettability tests demonstrated the hydrophilic nature of the coatings, and after seven days, the mineralisation of calcium phosphate proves the coatings become bioactive in simulated bodily fluid (SBF). Thus, we produced films of tantalum oxide, which, with the proper deposition parameters, may prove to be appropriate surfaces for titanium-based implant bio-applications.

摘要

为提高(α + β)型钛铝钒(Ti6Al4V)合金的耐磨性和耐腐蚀性,采用直流磁控溅射法在400、450和500 °C三种不同的基体温度下制备了陶瓷钽氧化物涂层。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、划痕试验和显微硬度测量等手段对涂层的晶体结构、表面形貌、化学成分、膜附着力和硬度进行了描述。通过电化学研究评估了样品的耐腐蚀能力。结果表明,薄膜的结构取决于温度,为非晶态或晶态。薄膜厚度在560至600 nm之间变化。随着沉积温度的升高,薄膜的硬度增加。所有氧化物涂层都与钛合金基体紧密结合,当温度从400 °C升至500 °C时,临界力从约8.6 N增加到20 N。在极化研究中,浸泡1 h后,电流密度(j)的下降证实了非晶态和良好晶态涂层的耐腐蚀性有所提高。表面膜的双层模型准确地描述了涂层体系的电化学行为。然而,根据电化学阻抗谱(EIS)分析,在模拟体液(SBF)中进行7天浸泡试验时,良好晶态的薄膜严重劣化,而非晶态薄膜则能防止渗透。润湿性测试表明涂层具有亲水性,7天后磷酸钙矿化证明涂层在模拟体液(SBF)中具有生物活性。因此,我们制备了钽氧化物薄膜,通过适当的沉积参数,这些薄膜可能被证明是钛基植入物生物应用的合适表面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c0c/12072652/eee9657d59d4/materials-18-01895-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验