Maksimović Tamara, Minda Daliana, Șoica Codruța, Mioc Alexandra, Mioc Marius, Colibășanu Daiana, Lukinich-Gruia Alexandra Teodora, Pricop Maria-Alexandra, Jianu Calin, Gogulescu Armand
Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania.
Research Center for Experimental Pharmacology and Drug Design (X-Pharm Design), "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timișoara, Romania.
Plants (Basel). 2025 Apr 29;14(9):1341. doi: 10.3390/plants14091341.
This study aims to assess the potential anticancer activity of lemongrass essential oil (LEO) using in vitro and in silico methods. The steam hydrodistillation of the aerial parts yielded 3.2% (wt) LEO. The GC-MS analysis of the LEO revealed the presence of α-citral (37.44%), β-citral (36.06%), linalool acetate (9.82%), and d-limonene (7.05%) as major components, accompanied by several other minor compounds. The antioxidant activity, assessed using the DPPH assay, revealed that LEO exhibits an IC value of 92.30 μg/mL. The cytotoxic effect of LEO, as well as LEO solubilized with Tween-20 (LEO-Tw) and PEG-400 (LEO-PEG), against a series of cancer cell lines (A375, RPMI-7951, MCF-7, and HT-29) was assessed using the Alamar Blue assay; the results revealed a high cytotoxic effect against all cell lines used in this study. Moreover, neither one of the tested concentrations of LEO, LEO-PG, or LEO-TW significantly affected the viability of healthy HaCaT cells, thus showing promising selectivity characteristics. Furthermore, LEO, LEO-PG, and LEO-TW increased ROS production and decreased the mitochondrial membrane potential (MMP) in all cancer cell lines. Moreover, LEO treatment decreased all mitochondrial respiratory rates, thus suggesting its ability to induce impairment of mitochondrial function. Molecular docking studies revealed that LEO anticancer activity, among other mechanisms, could be attributed to PDK1 and PI3Kα, where the major contributors are among the minor components of the essential oil. The highest active theoretical inhibitor against both proteins was β-caryophyllene oxide.
本研究旨在采用体外和计算机模拟方法评估柠檬草精油(LEO)的潜在抗癌活性。地上部分经水蒸气蒸馏得到3.2%(重量)的LEO。LEO的气相色谱 - 质谱分析表明,主要成分有α - 柠檬醛(37.44%)、β - 柠檬醛(36.06%)、乙酸芳樟酯(9.82%)和d - 柠檬烯(7.05%),同时还伴有其他几种次要化合物。采用DPPH法评估抗氧化活性,结果显示LEO的IC值为92.30μg/mL。使用alamar蓝法评估了LEO以及用吐温 - 20(LEO - Tw)和聚乙二醇 - 400(LEO - PEG)增溶的LEO对一系列癌细胞系(A375、RPMI - 7951、MCF - 7和HT - 29)的细胞毒性作用;结果表明对本研究中使用的所有细胞系均有较高的细胞毒性作用。此外,所测试的LEO、LEO - PG或LEO - TW浓度均未显著影响健康HaCaT细胞的活力,因此显示出有前景的选择性特征。此外,LEO、LEO - PG和LEO - TW在所有癌细胞系中均增加了活性氧(ROS)的产生并降低了线粒体膜电位(MMP)。而且,LEO处理降低了所有线粒体呼吸速率,从而表明其具有诱导线粒体功能受损的能力。分子对接研究表明,LEO的抗癌活性,除其他机制外,可能归因于丙酮酸脱氢酶激酶1(PDK1)和磷脂酰肌醇 - 3激酶α(PI3Kα),其中主要贡献者是精油中的次要成分。对这两种蛋白质活性最高的理论抑制剂是氧化β - 石竹烯。