Suppr超能文献

卷积神经网络实现了准静态光学相干弹性成像中的直接应变估计。

Convolutional Neural Networks Enable Direct Strain Estimation in Quasistatic Optical Coherence Elastography.

作者信息

Nair Achuth, Singh Manmohan, Aglyamov Salavat R, Larin Kirill V

机构信息

Department of Biomedical Engineering, University of Houston, Houston, Texas, USA.

Department of Mechanical Engineering, University of Houston, Houston, Texas, USA.

出版信息

J Biophotonics. 2025 Jul;18(7):e202400386. doi: 10.1002/jbio.202400386. Epub 2025 May 13.

Abstract

Assessing the biomechanical properties of tissues can provide important information for disease diagnosis and therapeutic monitoring. Optical coherence elastography (OCE) is an emerging technology for measuring the biomechanical properties of tissues. Clinical translation of this technology is underway, and steps are being implemented to streamline data collection and processing. OCE data can be noisy, data processing can require significant manual tuning, and a single acquisition may contain gigabytes of data. In this work, we introduce a convolutional neural network-based method to translate raw OCE phase data to strain for quasistatic OCE that is ~40X faster than the conventional least squares approach by bypassing many intermediate data processing steps. The results suggest that a machine learning approach may be a valuable tool for fast, efficient, and accurate extraction of biomechanical information from raw OCE data.

摘要

评估组织的生物力学特性可为疾病诊断和治疗监测提供重要信息。光学相干弹性成像(OCE)是一种用于测量组织生物力学特性的新兴技术。该技术的临床转化正在进行中,并且正在采取措施简化数据收集和处理。OCE数据可能有噪声,数据处理可能需要大量手动调整,并且单次采集可能包含数GB的数据。在这项工作中,我们引入了一种基于卷积神经网络的方法,将原始OCE相位数据转换为准静态OCE的应变,该方法通过绕过许多中间数据处理步骤,比传统的最小二乘法快约40倍。结果表明,机器学习方法可能是从原始OCE数据中快速、高效且准确地提取生物力学信息的宝贵工具。

相似文献

1
Convolutional Neural Networks Enable Direct Strain Estimation in Quasistatic Optical Coherence Elastography.
J Biophotonics. 2025 Jul;18(7):e202400386. doi: 10.1002/jbio.202400386. Epub 2025 May 13.
2
Dual optical elastography detects -induced alterations in the biomechanical properties of skin scaffolds.
J Biomed Opt. 2024 Sep;29(9):095002. doi: 10.1117/1.JBO.29.9.095002. Epub 2024 Sep 18.
6
RAFT-USENet: A Unified Network for Accurate Axial and Lateral Motion Estimation in Ultrasound Elastography Imaging.
IEEE J Biomed Health Inform. 2025 Jul;29(7):5109-5122. doi: 10.1109/JBHI.2025.3536786.
8
Use of a convolutional neural network for direct detection of acid-fast bacilli from clinical specimens.
Microbiol Spectr. 2025 Aug 5;13(8):e0060225. doi: 10.1128/spectrum.00602-25. Epub 2025 Jun 23.
10
Deep Learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope.
IEEE Trans Med Imaging. 2025 Mar;44(3):1445-1453. doi: 10.1109/TMI.2024.3505676. Epub 2025 Mar 17.

本文引用的文献

1
Tumor spheroid elasticity estimation using mechano-microscopy combined with a conditional generative adversarial network.
Comput Methods Programs Biomed. 2024 Oct;255:108362. doi: 10.1016/j.cmpb.2024.108362. Epub 2024 Aug 3.
3
Compressional Optical Coherence Elastography of the Cornea.
Photonics. 2021 Apr;8(4). doi: 10.3390/photonics8040111. Epub 2021 Apr 7.
5
Introduction to optical coherence elastography: tutorial.
J Opt Soc Am A Opt Image Sci Vis. 2022 Mar 1;39(3):418-430. doi: 10.1364/JOSAA.444808.
7
Wave-based optical coherence elastography: The 10-year perspective.
Prog Biomed Eng (Bristol). 2022 Jan;4(1). doi: 10.1088/2516-1091/ac4512. Epub 2022 Jan 14.
9
Speckle-dependent accuracy in phase-sensitive optical coherence tomography.
Opt Express. 2021 May 24;29(11):16950-16968. doi: 10.1364/OE.417954.
10
Heartbeat optical coherence elastography: corneal biomechanics in vivo.
J Biomed Opt. 2021 Feb;26(2). doi: 10.1117/1.JBO.26.2.020502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验