Liu Yunchao, Moretti Rocco, Wang Yu, Dong Ha, Yan Bailu, Bodenheimer Bobby, Derr Tyler, Meiler Jens
Department of Computer Science, Vanderbilt University, 2201 West End Ave, Nashville, Tennessee 37235, United States.
Department of Chemistry, Center for Structural Biology, Vanderbilt University, 2201 West End Ave, Nashville, Tennessee 37235, United States.
J Chem Inf Model. 2025 May 26;65(10):4898-4905. doi: 10.1021/acs.jcim.5c00822. Epub 2025 May 14.
The fusion of traditional chemical descriptors with graph neural networks (GNNs) offers a compelling strategy for enhancing ligand-based virtual screening methodologies. A comprehensive evaluation revealed that the benefits derived from this integrative strategy vary significantly among different GNNs. Specifically, while GCN and SchNet demonstrate pronounced improvements by incorporating descriptors, SphereNet exhibits only marginal enhancement. Intriguingly, despite SphereNet's modest gain, all three models-GCN, SchNet, and SphereNet-achieve comparable performance levels when leveraging this combination strategy. This observation underscores a pivotal insight: sophisticated GNN architectures may be substituted with simpler counterparts without sacrificing efficacy, provided that they are augmented with descriptors. Furthermore, our analysis reveals a set of expert-crafted descriptors' robustness in scaffold-split scenarios, frequently outperforming the combined GNN-descriptor models. Given the critical importance of scaffold splitting in accurately mimicking real-world drug discovery contexts, this finding accentuates an imperative for GNN researchers to innovate models that can adeptly navigate and predict within such frameworks. Our work not only validates the potential of integrating descriptors with GNNs in advancing ligand-based virtual screening but also illuminates pathways for future enhancements in model development and application. Our implementation can be found at https://github.com/meilerlab/gnn-descriptor.
将传统化学描述符与图神经网络(GNN)相结合,为改进基于配体的虚拟筛选方法提供了一种引人注目的策略。全面评估表明,这种整合策略带来的益处因不同的GNN而异。具体而言,虽然GCN和SchNet通过纳入描述符展现出显著改进,但SphereNet仅表现出微小提升。有趣的是,尽管SphereNet的提升不大,但在利用这种组合策略时,GCN、SchNet和SphereNet这三种模型都达到了可比的性能水平。这一观察结果凸显了一个关键见解:只要用描述符进行增强,复杂的GNN架构可以被更简单的架构替代而不牺牲有效性。此外,我们的分析揭示了一组专家精心设计的描述符在支架拆分场景中的稳健性,它们常常优于GNN与描述符的组合模型。鉴于支架拆分在准确模拟现实世界药物发现背景中的至关重要性,这一发现强调了GNN研究人员创新能够在此类框架内熟练导航和预测模型的紧迫性。我们的工作不仅验证了将描述符与GNN整合在推进基于配体虚拟筛选方面的潜力,还阐明了模型开发和应用未来改进的途径。我们的实现可在https://github.com/meilerlab/gnn-descriptor上找到。