Ruotsalainen Tapio, Panfilov Egor, Thevenot Jerome, Tiulpin Aleksei, Saarakkala Simo, Niinimäki Jaakko, Lehenkari Petri, Valkealahti Maarit
Division of Musculoskeletal Surgery, University Hospital of Oulu, Oulu, Finland.
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Arch Osteoporos. 2025 May 14;20(1):66. doi: 10.1007/s11657-025-01542-3.
Osteoporosis screening should be systematic in the group of over 50-year-old females with a radius fracture. We tested a phantom combined with machine learning model and studied osteoporosis-related variables. This machine learning model for screening osteoporosis using plain radiographs requires further investigation in larger cohorts to assess its potential as a replacement for DXA measurements in settings where DXA is not available.
The main purpose of this study was to improve osteoporosis screening, especially in post-menopausal patients with fragility wrist fractures. The secondary objective was to increase understanding of the connection between osteoporosis and aging, as well as other risk factors.
We collected data on 83 females > 50 years old with a distal radius fracture treated at Oulu University Hospital in 2019-2020. The data included basic patient information, WHO FRAX tool, blood tests, X-ray imaging of the fractured wrist, and DXA scanning of the non-fractured forearm, both hips, and the lumbar spine. Machine learning was used in combination with a custom phantom.
Eighty-five percent of the study population had osteopenia or osteoporosis. Only 28.4% of patients had increased bone resorption activity measured by ICTP values. Total radius BMD correlated with other osteoporosis-related variables (age r = - 0.494, BMI r = 0.273, FRAX osteoporotic fracture risk r = - 0.419, FRAX hip fracture risk r = - 0.433, hip BMD r = 0.435, and lumbar spine BMD r = 0.645), but the ultra distal (UD) radius BMD did not. Our custom phantom combined with a machine learning model showed potential for screening osteoporosis, with the class-wise accuracies for "Osteoporotic vs. osteopenic & normal bone" of 76% and 75%, respectively.
We suggest osteoporosis screening for all females over 50 years old with wrist fractures. We found that the total radius BMD correlates with the central BMD. Due to the limited sample size in the phantom and machine learning parts of the study, further research is needed to make a clinically useful tool for screening osteoporosis.
对于50岁以上发生桡骨骨折的女性群体,骨质疏松筛查应系统化。我们测试了一个与机器学习模型相结合的体模,并研究了骨质疏松相关变量。这种使用普通X线片筛查骨质疏松的机器学习模型需要在更大的队列中进一步研究,以评估其在无法进行双能X线吸收法(DXA)测量的情况下替代DXA测量的潜力。
本研究的主要目的是改进骨质疏松筛查,尤其是在绝经后脆性腕部骨折患者中。次要目标是增进对骨质疏松与衰老以及其他危险因素之间联系的理解。
我们收集了2019 - 2020年在奥卢大学医院接受治疗的83名年龄大于50岁的桡骨远端骨折女性的数据。数据包括患者基本信息、世界卫生组织(WHO)骨折风险评估工具(FRAX)、血液检查、骨折腕部的X线成像以及未骨折的前臂、双髋和腰椎的DXA扫描。机器学习与定制体模结合使用。
85%的研究人群患有骨质减少或骨质疏松。仅28.4%的患者通过I型胶原交联C末端肽(ICTP)值测量显示骨吸收活性增加。桡骨总骨密度与其他骨质疏松相关变量相关(年龄r = -0.494,体重指数r = 0.273,FRAX骨质疏松性骨折风险r = -0.419,FRAX髋部骨折风险r = -0.433,髋部骨密度r = 0.435,腰椎骨密度r = 0.645),但桡骨超远端(UD)骨密度不相关。我们的定制体模与机器学习模型相结合显示出筛查骨质疏松的潜力,“骨质疏松与骨质减少及正常骨”的类别准确率分别为76%和75%。
我们建议对所有50岁以上发生腕部骨折的女性进行骨质疏松筛查。我们发现桡骨总骨密度与中心骨密度相关。由于本研究中体模和机器学习部分的样本量有限,需要进一步研究以制作出临床上有用的骨质疏松筛查工具。