Wu Xinyi, Li Chun
Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo District, Shanghai, 200065, China.
Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
Discov Oncol. 2025 May 14;16(1):762. doi: 10.1007/s12672-025-02585-1.
Breast cancer remains a formidable global health challenge, with tumor-infiltrating lymphocytes (TILs) serving as pivotal biomarkers associated with disease progression, therapeutic response, and survival. While research typically focused on stromal TILs (sTILs), we hypothesize that intratumoral TILs (iTILs), which are in direct contact with tumor cells, have a more profound role in the immune-tumor interactions. In light of this, we have developed an iTIL-centric model for breast cancer patient stratification and prognostic prediction.
We sourced RNA-seq data and clinical profiles of breast cancer patients from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) to form our training dataset. Testing datasets, including GSE20685, GSE42568, GSE48390, and GSE88770, were retrieved from Gene Expression Omnibus (GEO). Employing consensus clustering and Weighted Correlation Network Analysis (WGCNA), we identified iTIL-associated hub genes. Our iTIL-centric signature was developed using a machine learning framework integrating 101 algorithms, validated across independent testing sets. Kaplan-Meier analysis and a nomogram model were utilized to evaluate the prognostic accuracy and clinical correlation of our model. GO and KEGG analyses elucidated the biological processes and pathways related to the iTIL signature. The immune profiling provided a comprehensive assessment of the immunological landscape. Moreover, potential drugs for high-risk patients were identified using CTRP v.2.0 and PRISM databases.
Our study constructed a pioneering prognostic model based on iTIL-centric signature via a machine learning framework that evaluated 101 algorithm combinations. This model revealed significant differences in the immune landscape among stratified patient cohorts, and demonstrated robust predictive capabilities across multiple datasets. The model showed excellent predictive performance with area under the curve (AUC) values of 0.940, 0.959, and 0.973 for 3-, 5-, and 10-year survival predictions, respectively. Additionally, it was identified as a significant risk factor for overall survival (OS) in the univariate analysis, with a hazard ratio (HR) > 1 and a p-value < 0.001.
Our prognostic model, founded on machining learning algorithms and anchored by an iTIL-centric signature, stands out as an invaluable tool for breast cancer patients, offering advanced prognostic insights and facilitating the development of personalized therapeutic strategies.
乳腺癌仍然是一项严峻的全球健康挑战,肿瘤浸润淋巴细胞(TILs)作为与疾病进展、治疗反应和生存相关的关键生物标志物。虽然研究通常集中在基质TILs(sTILs)上,但我们推测与肿瘤细胞直接接触的肿瘤内TILs(iTILs)在免疫-肿瘤相互作用中发挥着更重要的作用。有鉴于此,我们开发了一种以iTIL为中心的模型,用于乳腺癌患者分层和预后预测。
我们从癌症基因组图谱(TCGA)和国际乳腺癌分子分类联盟(METABRIC)获取乳腺癌患者的RNA测序数据和临床资料,以形成我们的训练数据集。从基因表达综合数据库(GEO)中检索测试数据集,包括GSE20685、GSE42568、GSE48390和GSE88770。采用共识聚类和加权相关网络分析(WGCNA),我们确定了与iTIL相关的枢纽基因。我们以iTIL为中心的特征是使用一个集成了101种算法的机器学习框架开发的,并在独立测试集中进行了验证。利用Kaplan-Meier分析和列线图模型来评估我们模型的预后准确性和临床相关性。基因本体(GO)和京都基因与基因组百科全书(KEGG)分析阐明了与iTIL特征相关的生物学过程和途径。免疫图谱提供了对免疫格局的全面评估。此外,使用CTRP v.2.0和PRISM数据库确定了高危患者的潜在药物。
我们的研究通过一个评估101种算法组合的机器学习框架,构建了一个基于以iTIL为中心特征的开创性预后模型。该模型揭示了分层患者队列之间免疫格局的显著差异,并在多个数据集中表现出强大的预测能力。该模型在3年、5年和10年生存预测中的曲线下面积(AUC)值分别为0.940、0.959和0.973,显示出优异的预测性能。此外,在单变量分析中,它被确定为总生存(OS)的一个显著风险因素,风险比(HR)>1,p值<0.001。
我们的预后模型基于机器学习算法,以iTIL为中心特征,是乳腺癌患者的一个宝贵工具,提供了先进的预后见解,并促进了个性化治疗策略的制定。